Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells.

Abstract:

Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during fungal infections and proposes novel microRNAs that could be experimentally verified.

SEEK ID: https://funginet.hki-jena.de/publications/115

PubMed ID: 28280489

Projects: A2, B3 (E), C3, INF

Journal: Front Microbiol

Citation: Front Microbiol. 2017 Feb 23;8:270. doi: 10.3389/fmicb.2017.00270. eCollection 2017.

Date Published: 11th Mar 2017

Authors: Andreas Dix, K. Czakai, I. Leonhardt, K. Schaferhoff, M. Bonin, Reinhard Guthke, Hermann Einsele, Oliver Kurzai, Jürgen Löffler, Jörg Linde

Help
help Creator
Activity

Views: 275

Created: 11th Feb 2021 at 09:34

help Attributions

None

Related items

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH