ModuleDiscoverer: Identification of regulatory modules in protein-protein interaction networks.

Abstract:

The identification of disease-associated modules based on protein-protein interaction networks (PPINs) and gene expression data has provided new insights into the mechanistic nature of diverse diseases. However, their identification is hampered by the detection of protein communities within large-scale, whole-genome PPINs. A presented successful strategy detects a PPIN's community structure based on the maximal clique enumeration problem (MCE), which is a non-deterministic polynomial time-hard problem. This renders the approach computationally challenging for large PPINs implying the need for new strategies. We present ModuleDiscoverer, a novel approach for the identification of regulatory modules from PPINs and gene expression data. Following the MCE-based approach, ModuleDiscoverer uses a randomization heuristic-based approximation of the community structure. Given a PPIN of Rattus norvegicus and public gene expression data, we identify the regulatory module underlying a rodent model of non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD). The module is validated using single-nucleotide polymorphism (SNP) data from independent genome-wide association studies and gene enrichment tests. Based on gene enrichment tests, we find that ModuleDiscoverer performs comparably to three existing module-detecting algorithms. However, only our NASH-module is significantly enriched with genes linked to NAFLD-associated SNPs. ModuleDiscoverer is available at http://www.hki-jena.de/index.php/0/2/490 (Others/ModuleDiscoverer).

SEEK ID: https://funginet.hki-jena.de/publications/112

PubMed ID: 29323246

Projects: B1, INF

Journal: Sci Rep

Citation: Sci Rep. 2018 Jan 11;8(1):433. doi: 10.1038/s41598-017-18370-2.

Date Published: 11th Jan 2018

Authors: S. Vlaic, Theresia Conrad, C. Tokarski-Schnelle, M. Gustafsson, U. Dahmen, Reinhard Guthke, Stefan Schuster

Help
help Creator
Activity

Views: 814

Created: 11th Feb 2021 at 09:20

help Attributions

None

Related items

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH