Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans.

Abstract:

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.

SEEK ID: https://funginet.hki-jena.de/publications/140

PubMed ID: 30799037

Projects: A1, C1, Z2

Journal: Cell

Citation: Cell. 2019 Mar 7;176(6):1340-1355.e15. doi: 10.1016/j.cell.2019.01.041. Epub 2019 Feb 21.

Date Published: 7th Mar 2019

Authors: P. Bacher, T. Hohnstein, E. Beerbaum, M. Rocker, M. G. Blango, S. Kaufmann, J. Rohmel, P. Eschenhagen, C. Grehn, K. Seidel, V. Rickerts, L. Lozza, U. Stervbo, M. Nienen, N. Babel, J. Milleck, M. Assenmacher, O. A. Cornely, M. Ziegler, H. Wisplinghoff, G. Heine, M. Worm, B. Siegmund, J. Maul, P. Creutz, C. Tabeling, C. Ruwwe-Glosenkamp, L. E. Sander, C. Knosalla, S. Brunke, Bernhard Hube, Olaf Kniemeyer, Axel Brakhage, C. Schwarz, A. Scheffold

Help
help Creator
Activity

Views: 705

Created: 15th Feb 2021 at 11:31

help Attributions

None

Related items

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH