Significant Differences in Host-Pathogen Interactions Between Murine and Human Whole Blood.


Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.


PubMed ID: 33519798

Projects: C5, FungiNet C - Candida projects

Publication type: Not specified

Journal: Front Immunol

Citation: Front Immunol. 2021 Jan 15;11:565869. doi: 10.3389/fimmu.2020.565869. eCollection 2020.

Date Published: 1st Feb 2021

Registered Mode: Not specified

Authors: S. Machata, S. Sreekantapuram, K. Hunniger, O. Kurzai, C. Dunker, K. Schubert, W. Kruger, B. Schulze-Richter, C. Speth, G. Rambach, I. D. Jacobsen

help Submitter

Views: 1472

Created: 19th Feb 2021 at 16:08

Last updated: 17th Jan 2024 at 10:24

help Tags

This item has not yet been tagged.

help Attributions


Powered by
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH