Publications

What is a Publication?
203 Publications visible to you, out of a total of 203

Abstract (Expand)

Clearance of invading microbes requires phagocytes of the innate immune system. However, successful pathogens have evolved sophisticated strategies to evade immune killing. The opportunistic human fungal pathogen Candida albicans is efficiently phagocytosed by macrophages, but causes inflammasome activation, host cytolysis, and escapes after hypha formation. Previous studies suggest that macrophage lysis by C. albicans results from early inflammasome-dependent cell death (pyroptosis), late damage due to glucose depletion and membrane piercing by growing hyphae. Here we show that Candidalysin, a cytolytic peptide toxin encoded by the hypha-associated gene ECE1, is both a central trigger for NLRP3 inflammasome-dependent caspase-1 activation via potassium efflux and a key driver of inflammasome-independent cytolysis of macrophages and dendritic cells upon infection with C. albicans. This suggests that Candidalysin-induced cell damage is a third mechanism of C. albicans-mediated mononuclear phagocyte cell death in addition to damage caused by pyroptosis and the growth of glucose-consuming hyphae.

Authors: L. Kasper, A. Konig, P. A. Koenig, M. S. Gresnigt, J. Westman, R. A. Drummond, M. S. Lionakis, O. Gross, J. Ruland, J. R. Naglik, B. Hube

Date Published: 15th Oct 2018

Publication Type: Not specified

Abstract (Expand)

Aspergillus fumigatus is a common airborne fungal pathogen of humans and a significant source of mortality in immunocompromised individuals. Here, we provide the most extensive cell wall proteome profiling to date of A. fumigatus resting conidia, the fungal morphotype pertinent to first contact with the host. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified proteins within the conidial cell wall by hydrogen-fluoride (HF)-pyridine extraction and proteins exposed on the surface using a trypsin-shaving approach. One protein, designated conidial cell wall protein A (CcpA), was identified by both methods and was found to be nearly as abundant as hydrophobic rodlet layer-forming protein RodA. CcpA, an amphiphilic protein, like RodA, peaks in expression during sporulation on resting conidia. Despite high cell wall abundance, the cell surface structure of DeltaccpA resting conidia appeared normal. However, trypsin shaving of DeltaccpA conidia revealed novel surface-exposed proteins not detected on conidia of the wild-type strain. Interestingly, the presence of swollen DeltaccpA conidia led to higher activation of neutrophils and dendritic cells than was seen with wild-type conidia and caused significantly less damage to epithelial cells in vitro In addition, virulence was highly attenuated when cortisone-treated, immunosuppressed mice were infected with DeltaccpA conidia. CcpA-specific memory T cell responses were detectable in healthy human donors naturally exposed to A. fumigatus conidia, suggesting a role for CcpA as a structural protein impacting conidial immunogenicity rather than possessing a protein-intrinsic immunosuppressive effect. Together, these data suggest that CcpA serves as a conidial stealth protein by altering the conidial surface structure to minimize innate immune recognition.IMPORTANCE The mammalian immune system relies on recognition of pathogen surface antigens for targeting and clearance. In the absence of immune evasion strategies, pathogen clearance is rapid. In the case of Aspergillus fumigatus, the successful fungus must avoid phagocytosis in the lung to establish invasive infection. In healthy individuals, fungal spores are cleared by immune cells; however, in immunocompromised patients, clearance mechanisms are impaired. Here, using proteome analyses, we identified CcpA as an important fungal spore protein involved in pathogenesis. A. fumigatus lacking CcpA was more susceptible to immune recognition and prompt eradication and, consequently, exhibited drastically attenuated virulence. In infection studies, CcpA was required for virulence in infected immunocompromised mice, suggesting that it could be used as a possible immunotherapeutic or diagnostic target in the future. In summary, our report adds a protein to the list of those known to be critical to the complex fungal spore surface environment and, more importantly, identifies a protein important for conidial immunogenicity during infection.

Authors: V. Voltersen, M. G. Blango, S. Herrmann, F. Schmidt, T. Heinekamp, M. Strassburger, T. Kruger, P. Bacher, J. Lother, E. Weiss, K. Hunniger, H. Liu, P. Hortschansky, A. Scheffold, J. Loffler, S. Krappmann, S. Nietzsche, O. Kurzai, H. Einsele, O. Kniemeyer, S. G. Filler, U. Reichard, A. A. Brakhage

Date Published: 2nd Oct 2018

Publication Type: Not specified

Abstract (Expand)

Gain-of-function mutations in the zinc cluster transcription factors Mrr1, Tac1, and Upc2, which result in constitutive overexpression of their target genes, are a frequent cause of fluconazole resistance in the pathogenic yeast Candida albicans In this study, we show that an activated form of another zinc cluster transcription factor, Stb5, confers resistance to the natural compound beauvericin via the overexpression of YOR1, encoding an efflux pump of the ATP-binding cassette transporter superfamily. Beauvericin was recently shown to potentiate the activity of azole drugs against C. albicans Although Yor1 did not contribute to fluconazole resistance when C. albicans cells were treated with the drug alone, Stb5-mediated YOR1 overexpression diminished the synergistic effect of the fluconazole-beauvericin combination, thereby enhancing fluconazole resistance in beauvericin-treated C. albicans cells. Stb5-mediated YOR1 overexpression also suppressed the inhibition of hyphal growth, an important virulence trait of C. albicans, by beauvericin. Therefore, activating mutations in Stb5, which result in constitutive YOR1 overexpression, may enable C. albicans to acquire resistance to beauvericin and thereby overcome both the sensitization to azole drugs and the inhibition of morphogenesis caused by this compound.

Authors: B. Ramirez-Zavala, H. Manz, F. Englert, P. D. Rogers, J. Morschhauser

Date Published: 27th Sep 2018

Publication Type: Not specified

Abstract (Expand)

Mold specific T-cells have been described as a supportive biomarker to monitor invasive mycoses and mold exposure. This study comparatively evaluated frequencies and cytokine profiles of Aspergillus fumigatus and Mucorales reactive T-cells depending on environmental mold exposure. Peripheral blood mononuclear cells (PBMCs) obtained from 35 healthy donors were stimulated with mycelial lysates of A. fumigatus and three human pathogenic Mucorales species. CD154(+) specific T-cells were quantified by flow cytometry. In a second cohort of 20 additional donors, flow cytometry was complemented by 13-plex cytokine assays. Mold exposure of the subjects was determined using a previously established questionnaire. Highly exposed subjects exhibited significantly greater CD154(+)A. fumigatus and Mucorales specific naive and memory T-helper cell frequencies. Significant correlation (r = 0.48 - 0.79) was found between A. fumigatus and Mucorales specific T-cell numbers. Logistic regression analyses revealed that combined analysis of mold specific T-cell frequencies and selected cytokine markers (A. fumigatus: IL-5 and TNF-alpha, R. arrhizus: IL-17A and IL-13) significantly improves classification performance, resulting in 75-90 % predictive power using 10-fold cross-validation. In conclusion, mold specific T-cell frequencies and their cytokine signatures offer promising potential in the assessment of environmental mold exposure. The cytokines identified in this pilot study should be validated in the clinical setting, e. g. in patients with hypersensitivity pneumonitis.

Authors: L. Page, P. Weis, T. Muller, M. Dittrich, M. Lazariotou, M. Dragan, A. M. Waaga-Gasser, J. Helm, T. Dandekar, H. Einsele, J. Loffler, A. J. Ullmann, S. Wurster

Date Published: 12th Sep 2018

Publication Type: Not specified

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Deltaaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Deltaaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Deltaaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.

Authors: P. Dasari, I. A. Shopova, M. Stroe, D. Wartenberg, H. Martin-Dahse, N. Beyersdorf, P. Hortschansky, S. Dietrich, Z. Cseresnyes, M. T. Figge, M. Westermann, C. Skerka, A. A. Brakhage, P. F. Zipfel

Date Published: 1st Sep 2018

Publication Type: Not specified

Abstract (Expand)

Rationale: The liver is a central organ not only for metabolism but also immune function. Life-threatening infections of both bacterial and fungal origin can affect liver function but it is yet unknown whether molecular changes differ depending on the pathogen. We aimed to determine whether the hepatic host response to bacterial and fungal infections differs in terms of hepatic metabolism and liver function. Methods: We compared murine models of infection, including bacterial peritoneal contamination and infection (PCI), intraperitoneal and systemic C. albicans infection, at 6 and 24 h post-infection, to sham controls. The molecular hepatic host response was investigated by the detection of regulatory modules based on large-scale protein-protein interaction networks and expression data. Topological analysis of these regulatory modules was used to reveal infection-specific biological processes and molecular mechanisms. Intravital microscopy and immunofluorescence microscopy were used to further analyze specific aspects of pathophysiology such as cholestasis. Results: Down-regulation of lipid catabolism and bile acid synthesis was observed after 6 h in all infection groups. Alterations in lipid catabolism were characterized by accumulation of long chain acylcarnitines and defective beta-oxidation, which affected metabolism by 6 h. While PCI led to an accumulation of unconjugated bile acids (BA), C. albicans infection caused accumulation of conjugated BA independent of the route of infection. Hepatic dye clearance and transporter expression revealed reduced hepatic uptake in fungal infections vs. defects in secretion following polybacterial infection. Conclusion: Molecular phenotypes of lipid accumulation and cholestasis allow differentiation between pathogens as well as routes of infection at early stages in mice. Targeted metabolomics could be a useful tool for the profiling of infected/septic patients and the type of pathogen, with subsequent customization and targeting of therapy.

Authors: B. Schaarschmidt, S. Vlaic, A. Medyukhina, S. Neugebauer, S. Nietzsche, F. A. Gonnert, J. Rodel, M. Singer, M. Kiehntopf, M. T. Figge, I. D. Jacobsen, M. Bauer, A. T. Press

Date Published: 8th Aug 2018

Publication Type: Not specified

Abstract (Expand)

Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host(-)pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.

Authors: E. Bencurova, S. K. Gupta, E. Sarukhanyan, T. Dandekar

Date Published: 4th Jul 2018

Publication Type: Not specified

Abstract (Expand)

Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as beta-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.

Authors: S. Goyal, J. C. Castrillon-Betancur, E. Klaile, H. Slevogt

Date Published: 20th Jun 2018

Publication Type: Not specified

Abstract (Expand)

Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.

Authors: S. Allert, T. M. Forster, C. M. Svensson, J. P. Richardson, T. Pawlik, B. Hebecker, S. Rudolphi, M. Juraschitz, M. Schaller, M. Blagojevic, J. Morschhauser, M. T. Figge, I. D. Jacobsen, J. R. Naglik, L. Kasper, S. Mogavero, B. Hube

Date Published: 5th Jun 2018

Publication Type: Not specified

Abstract (Expand)

As a part of the complement system, factor H regulates phagocytosis and helps differentiate between a body's own and foreign cells. Owing to mimicry efforts, some pathogenic microorganisms such as Candida albicans are able to bind factor H on their cell surfaces and, thus, become similar to host cells. This implies that the decision between self and foreign is not clear-cut, which leads to a classification problem for the immune system. Here, two different alleles determining the binding affinity of factor H are relevant. Those alleles differ in the SNP Y402H; they are known to be associated with susceptibility to certain diseases. Interestingly, the fraction of both alleles differs in ethnic groups. The game-theoretical model proposed in this article explains the coexistence of both alleles by a battle of the sexes game and investigates the trade-off between pathogen detection and protection of host cells. Further, we discuss the ethnicity-dependent frequencies of the alleles. Moreover, the model elucidates the mimicry efforts by pathogenic microorganisms.

Authors: S. Hummert, C. Glock, S. N. Lang, C. Hummert, C. Skerka, P. F. Zipfel, S. Germerodt, S. Schuster

Date Published: 4th May 2018

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH