Publications

What is a Publication?
27 Publications visible to you, out of a total of 27

Abstract (Expand)

Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.

Authors: S. Machata, S. Sreekantapuram, K. Hunniger, O. Kurzai, C. Dunker, K. Schubert, W. Kruger, B. Schulze-Richter, C. Speth, G. Rambach, I. D. Jacobsen

Date Published: 1st Feb 2021

Publication Type: Not specified

Abstract (Expand)

Burn wounds are highly susceptible sites for colonization and infection by bacteria and fungi. Large wound surface, impaired local immunity, and broad-spectrum antibiotic therapy support growth of opportunistic fungi such as Candida albicans, which may lead to invasive candidiasis. Currently, it remains unknown whether depressed host defenses or fungal virulence drive the progression of burn wound candidiasis. Here we established an ex vivo burn wound model, where wounds were inflicted by applying preheated soldering iron to human skin explants, resulting in highly reproducible deep second-degree burn wounds. Eschar removal by debridement allowed for deeper C. albicans penetration into the burned tissue associated with prominent filamentation. Active migration of resident tissue neutrophils towards the damaged tissue and release of pro-inflammatory cytokine IL-1beta accompanied the burn. The neutrophil recruitment was further increased upon supplementation of the model with fresh immune cells. Wound area and depth decreased over time, indicating healing of the damaged tissue. Importantly, prominent neutrophil presence at the infected site correlated to the limited penetration of C. albicans into the burned tissue. Altogether, we established a reproducible burn wound model of candidiasis using ex vivo human skin explants, where immune responses actively control the progression of infection and promote tissue healing.

Authors: C. von Muller, F. Bulman, L. Wagner, D. Rosenberger, A. Marolda, O. Kurzai, P. Eissmann, I. D. Jacobsen, B. Perner, P. Hemmerich, S. Vylkova

Date Published: 11th Dec 2020

Publication Type: Not specified

Abstract (Expand)

Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.

Authors: C. d'Enfert, A. K. Kaune, L. R. Alaban, S. Chakraborty, N. Cole, M. Delavy, D. Kosmala, B. Marsaux, R. Frois-Martins, M. Morelli, D. Rosati, M. Valentine, Z. Xie, Y. Emritloll, P. A. Warn, F. Bequet, M. E. Bougnoux, S. Bornes, M. S. Gresnigt, B. Hube, I. D. Jacobsen, M. Legrand, S. Leibundgut-Landmann, C. Manichanh, C. A. Munro, M. G. Netea, K. Queiroz, K. Roget, V. Thomas, C. Thoral, P. Van den Abbeele, A. W. Walker, A. J. P. Brown

Date Published: 24th Nov 2020

Publication Type: Not specified

Abstract (Expand)

Invasive pulmonary aspergillosis (IPA) is a severe infection that is difficult to diagnose due to the ubiquitous presence of fungal spores, the underlying diseases of risk patients, and limitations of currently available markers. In this study, we performed a comprehensive liquid chromatography tandem mass spectrometry (LC-MS/MS)-based identification of host and fungal proteins expressed during IPA in mice and humans. The proteomic analysis of bronchoalveolar lavage samples of individual IPA and control cases allowed the description of common host factors that had significantly increased abundance in both infected animals and IPA patients compared to their controls. Although increased levels of these individual host proteins might not be sufficient to distinguish bacterial from fungal infection, a combination of these markers might be beneficial to improve diagnosis. We also identified 16 fungal proteins that were specifically detected during infection and may be valuable candidates for biomarker evaluation.

Authors: S. Machata, M. M. Muller, R. Lehmann, P. Sieber, G. Panagiotou, A. Carvalho, C. Cunha, K. Lagrou, J. Maertens, H. Slevogt, I. D. Jacobsen

Date Published: 12th Oct 2020

Publication Type: Not specified

Abstract (Expand)

Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-beta-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.

Authors: J. Matthias, S. Heink, F. Picard, J. Zeitrag, A. Kolz, Y. Y. Chao, D. Soll, G. P. de Almeida, E. Glasmacher, I. D. Jacobsen, T. Riedel, A. Peters, S. Floess, J. Huehn, D. Baumjohann, M. Huber, T. Korn, C. E. Zielinski

Date Published: 1st Sep 2020

Publication Type: Not specified

Abstract (Expand)

Typically, established lab strains are widely used to study host-pathogen interactions. However, to better reflect the infection process, the experimental use of clinical isolates has come more into focus. Here, we analyzed the interaction of multiple vaginal isolates of the opportunistic fungal pathogen Candida albicans, the most common cause of vulvovaginal candidiasis in women, with key players of the host immune system: macrophages. We tested several strains isolated from asymptomatic or symptomatic women with acute and recurrent infections. While all clinical strains showed a response similar to the commonly used lab strain SC5314 in various in vitro assays, they displayed remarkable differences during interaction with macrophages. This coincided with significantly reduced beta-glucan exposure on the cell surface, which appeared to be a shared property among the tested vaginal strains for yeast extract/peptone/dextrose-grown cells, which is partly lost when the isolates faced vaginal niche-like nutrient conditions. However, macrophage damage, survival of phagocytosis, and filamentation capacities were highly strain-specific. These results highlight the high heterogeneity of C. albicans strains in host-pathogen interactions, which have to be taken into account to bridge the gap between laboratory-gained data and disease-related outcomes in an actual patient.IMPORTANCE Vulvovaginal candidiasis is one of the most common fungal infections in humans with Candida albicans as the major causative agent. This study is the first to compare clinical vaginal isolates of defined patient groups in their interaction with macrophages, highlighting the vastly different outcomes in comparison to a laboratory strain using commonly applied virulence-determining assays.

Authors: F. Gerwien, C. Dunker, P. Brandt, E. Garbe, I. D. Jacobsen, S. Vylkova

Date Published: 19th Aug 2020

Publication Type: Not specified

Abstract (Expand)

Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-beta1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble beta-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-beta1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-beta1 to the TGF-beta receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-beta1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-beta1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.

Authors: L. D. Halder, E. A. H. Jo, M. Z. Hasan, M. Ferreira-Gomes, T. Kruger, M. Westermann, D. I. Palme, G. Rambach, N. Beyersdorf, C. Speth, I. D. Jacobsen, O. Kniemeyer, B. Jungnickel, P. F. Zipfel, C. Skerka

Date Published: 11th May 2020

Publication Type: Not specified

Abstract (Expand)

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.

Authors: S. Ruben, E. Garbe, S. Mogavero, D. Albrecht-Eckardt, D. Hellwig, A. Hader, T. Kruger, K. Gerth, I. D. Jacobsen, O. Elshafee, S. Brunke, K. Hunniger, O. Kniemeyer, A. A. Brakhage, J. Morschhauser, B. Hube, S. Vylkova, O. Kurzai, R. Martin

Date Published: 28th Apr 2020

Publication Type: Not specified

Abstract (Expand)

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CD66a) is a receptor for Candida albicans. It is crucial for the immune response of intestinal epithelial cells to this opportunistic pathogen. Moreover, CEACAM1 is of importance for the mucosal colonization by different bacterial pathogens. We therefore studied the influence of the human CEACAM1 receptor in human CEACAM1-transgenic mice on the C. albicans colonization and infection utilizing a colonization/dissemination and a systemic infection mouse model. Our results showed no alterations in the host response between the transgenic mice and the wild-type littermates to the C. albicans infections. Both mouse strains showed comparable C. albicans colonization and mycobiota, similar fungal burdens in various organs, and a similar survival in the systemic infection model. Interestingly, some of the mice treated with anti-bacterial antibiotics (to prepare them for C. albicans colonization via oral infection) also showed a strong reduction in endogenous fungi instead of the normally observed increase in fungal numbers. This was independent of the expression of human CEACAM1. In the systemic infection model, the human CEACAM1 expression was differentially regulated in the kidneys and livers of Candida-infected transgenic mice. Notably, in the kidneys, a total loss of the largest human CEACAM1 isoform was observed. However, the overwhelming immune response induced in the systemic infection model likely covered any CEACAM1-specific effects in the transgenic animals. In vitro studies using bone marrow-derived neutrophils from both mouse strains also revealed no differences in their reaction to C. albicans. In conclusion, in contrast to bacterial pathogens interacting with CEACAM1 on different mucosal surfaces, the human CEACAM1-transgenic mice did not reveal a role of human CEACAM1 in the in vivo candidiasis models used here. Further studies and different approaches will be needed to reveal a putative role of CEACAM1 in the host response to C. albicans.

Authors: E. Klaile, M. M. Muller, C. Zubiria-Barrera, S. Brehme, T. E. Klassert, M. Stock, A. Durotin, T. D. Nguyen, S. Feer, B. B. Singer, P. F. Zipfel, S. Rudolphi, I. D. Jacobsen, H. Slevogt

Date Published: 19th Dec 2019

Publication Type: Not specified

Abstract (Expand)

Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic Lactobacillus rhamnosus and the opportunistic pathogen Candida albicans show that pre-colonization of the intestinal lumen of the model by L. rhamnosus reduces C. albicans-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the in vitro model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.

Authors: M. Maurer, M. S. Gresnigt, A. Last, T. Wollny, F. Berlinghof, R. Pospich, Z. Cseresnyes, A. Medyukhina, K. Graf, M. Groger, M. Raasch, F. Siwczak, S. Nietzsche, I. D. Jacobsen, M. T. Figge, B. Hube, O. Huber, A. S. Mosig

Date Published: 10th Aug 2019

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH