Publications

Abstract (Expand)

The PspC and Hic proteins of Streptococcus pneumoniae are some of the most variable microbial immune evasion proteins identified to date. Due to structural similarities and conserved binding profiles, it was assumed for a long time that these pneumococcal surface proteins represent a protein family comprised of eleven subgroups. Recently, however, the evaluation of more proteins revealed a greater diversity of individual proteins. In contrast to previous assumptions a pattern evaluation of six PspC and five Hic variants, each representing one of the previously defined subgroups, revealed distinct structural and likely functionally regions of the proteins, and identified nine new domains and new domain alternates. Several domains are unique to PspC and Hic variants, while other domains are also present in other virulence factors encoded by pneumococci and other bacterial pathogens. This knowledge improved pattern evaluation at the level of full-length proteins, allowed a sequence comparison at the domain level and identified domains with a modular composition. This novel strategy increased understanding of individual proteins variability and modular domain composition, enabled a structural and functional characterization at the domain level and furthermore revealed substantial structural differences between PspC and Hic proteins. Given the exceptional genomic diversity of the multifunctional PspC and Hic proteins a detailed structural and functional evaluation need to be performed at the strain level. Such knowledge will also be useful for molecular strain typing and characterizing PspC and Hic proteins from new clinical S. pneumoniae strains.

Authors: S. Du, C. Vilhena, S. King, A. Sahagun-Ruiz, S. Hammerschmidt, Christine Skerka, Peter Zipfel

Date Published: 18th Jan 2021

Journal: Sci Rep

Abstract (Expand)

The complement system is part of the innate immune system and plays an important role in the host defense against infectious pathogens. One of the main effects is the opsonization of foreign invaders and subsequent uptake by phagocytosis. Due to the continuous default basal level of active complement molecules, a tight regulation is required to protect the body's own cells (self cells) from opsonization and from complement damage. A major complement regulator is Factor H, which is recruited from the fluid phase and attaches to cell surfaces where it effectively controls complement activation. Besides self cells, pathogens also have the ability to bind Factor H; they can thus escape opsonization and phagocytosis causing severe infections. In order to advance our understanding of the opsonization process at a quantitative level, we developed a mathematical model for the dynamics of the complement system-termed DynaCoSys model-that is based on ordinary differential equations for cell surface-bound molecules and on partial differential equations for concentration profiles of the fluid phase molecules in the environment of cells. This hybrid differential equation approach allows to model the complement cascade focusing on the role of active C3b in the fluid phase and on the cell surface as well as on its inactivation on the cell surface. The DynaCoSys model enables us to quantitatively predict the conditions under which Factor H mediated complement evasion occurs. Furthermore, investigating the quantitative impact of model parameters by a sensitivity analysis, we identify the driving processes of complement activation and regulation in both the self and non-self regime. The two regimes are defined by a critical Factor H concentration on the cell surface and we use the model to investigate the differential impact of complement model parameters on this threshold value. The dynamic modeling on the surface of pathogens are further relevant to understand pathophysiological situations where Factor H mutants and defective Factor H binding to target surfaces results in pathophysiology such as renal and retinal disease. In the future, this DynaCoSys model will be extended to also enable evaluating treatment strategies of complement-related diseases.

Authors: A. Tille, Teresa Lehnert, Peter Zipfel, Marc Thilo Figge

Date Published: 5th Oct 2020

Journal: Front Immunol

Abstract (Expand)

Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-beta1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble beta-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-beta1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-beta1 to the TGF-beta receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-beta1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-beta1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.

Authors: Luke Donald Halder, E. A. H. Jo, M. Z. Hasan, M. Ferreira-Gomes, Thomas Krüger, M. Westermann, D. I. Palme, G. Rambach, Niklas Beyersdorf, C. Speth, Ilse Jacobsen, Olaf Kniemeyer, Berit Jungnickel, Peter Zipfel, Christine Skerka

Date Published: 11th May 2020

Journal: Nat Commun

Abstract (Expand)

Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.

Authors: Iordana Shopova, I. Belyaev, Prasad Dasari, S. Jahreis, M. C. Stroe, Z. Cseresnyes, Ann-Kathrin Zimmermann, A. Medyukhina, Carl-Magnus Svensson, Thomas Krüger, V. Szeifert, S. Nietzsche, Theresia Conrad, M. G. Blango, Olaf Kniemeyer, M. von Lilienfeld-Toal, Peter Zipfel, E. Ligeti, Marc Thilo Figge, Axel Brakhage

Date Published: 14th Apr 2020

Journal: mBio

Abstract (Expand)

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CD66a) is a receptor for Candida albicans. It is crucial for the immune response of intestinal epithelial cells to this opportunistic pathogen. Moreover, CEACAM1 is of importance for the mucosal colonization by different bacterial pathogens. We therefore studied the influence of the human CEACAM1 receptor in human CEACAM1-transgenic mice on the C. albicans colonization and infection utilizing a colonization/dissemination and a systemic infection mouse model. Our results showed no alterations in the host response between the transgenic mice and the wild-type littermates to the C. albicans infections. Both mouse strains showed comparable C. albicans colonization and mycobiota, similar fungal burdens in various organs, and a similar survival in the systemic infection model. Interestingly, some of the mice treated with anti-bacterial antibiotics (to prepare them for C. albicans colonization via oral infection) also showed a strong reduction in endogenous fungi instead of the normally observed increase in fungal numbers. This was independent of the expression of human CEACAM1. In the systemic infection model, the human CEACAM1 expression was differentially regulated in the kidneys and livers of Candida-infected transgenic mice. Notably, in the kidneys, a total loss of the largest human CEACAM1 isoform was observed. However, the overwhelming immune response induced in the systemic infection model likely covered any CEACAM1-specific effects in the transgenic animals. In vitro studies using bone marrow-derived neutrophils from both mouse strains also revealed no differences in their reaction to C. albicans. In conclusion, in contrast to bacterial pathogens interacting with CEACAM1 on different mucosal surfaces, the human CEACAM1-transgenic mice did not reveal a role of human CEACAM1 in the in vivo candidiasis models used here. Further studies and different approaches will be needed to reveal a putative role of CEACAM1 in the host response to C. albicans.

Authors: Esther Klaile, M. M. Muller, C. Zubiria-Barrera, S. Brehme, Tilman Klassert, M. Stock, A. Durotin, T. D. Nguyen, S. Feer, B. B. Singer, Peter Zipfel, Sven Rudolphi, Ilse Jacobsen, Hortense Slevogt

Date Published: 19th Dec 2019

Journal: Front Microbiol

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.

Authors: Prasad Dasari, Naile Koleci, Iordana Shopova, D. Wartenberg, Niklas Beyersdorf, Stefanie Dietrich, A. Sahagun-Ruiz, Marc Thilo Figge, Christine Skerka, Axel Brakhage, Peter Zipfel

Date Published: 12th Dec 2019

Journal: Front Immunol

Abstract (Expand)

Persistent inflammation is a hallmark of many human diseases, including anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) and atherosclerosis. Here, we describe a dominant trigger of inflammation: human serum factor H-related protein FHR1. In vitro, this protein selectively binds to necrotic cells via its N-terminus; in addition, it binds near necrotic glomerular sites of AAV patients and necrotic areas in atherosclerotic plaques. FHR1, but not factor H, FHR2 or FHR3 strongly induces inflammasome NLRP3 in blood-derived human monocytes, which subsequently secrete IL-1beta, TNFalpha, IL-18 and IL-6. FHR1 triggers the phospholipase C-pathway via the G-protein coupled receptor EMR2 independent of complement. Moreover, FHR1 concentrations of AAV patients negatively correlate with glomerular filtration rates and associate with the levels of inflammation and progressive disease. These data highlight an unexpected role for FHR1 during sterile inflammation, may explain why FHR1-deficiency protects against certain diseases, and identifies potential targets for treatment of auto-inflammatory diseases.

Authors: Sarah Irmscher, S. R. Brix, Peter Zipfel, Luke Donald Halder, S. Mutluturk, S. Wulf, E. Girdauskas, H. Reichenspurner, R. A. K. Stahl, Berit Jungnickel, T. Wiech, Peter Zipfel, Christine Skerka

Date Published: 4th Jul 2019

Journal: Nat Commun

Abstract (Expand)

Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can reach a point where the immune system can no longer clearly distinguish between self and non-self cells. Thus, a trade-off between attacking disguised pathogens and erroneously attacking host cells has to be made. Based on signalling theory and protein-interaction modelling, we here present a mathematical model of molecular crypsis of pathogenic fungi using the example of Candida albicans. We tackle the question whether perfect crypsis is feasible, which would imply that protection of human cells by complement factors would be useless. The model identifies pathogen abundance relative to host cell abundance as the predominant factor influencing successful or unsuccessful molecular crypsis. If pathogen cells gain a (locally) quantitative advantage over host cells, even autoreactivity may occur. Our new model enables insights into the mechanisms of candidiasis-induced sepsis and complement-associated autoimmune diseases.

Authors: S. N. Lang, S. Germerodt, C. Glock, Christine Skerka, Peter Zipfel, Stefan Schuster

Date Published: 20th Feb 2019

Journal: PLoS One

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Deltaaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Deltaaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Deltaaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.

Authors: Prasad Dasari, Iordana Shopova, M. Stroe, D. Wartenberg, H. Martin-Dahse, Niklas Beyersdorf, P. Hortschansky, Stefanie Dietrich, Z. Cseresnyes, Marc Thilo Figge, M. Westermann, Christine Skerka, Axel Brakhage, Peter Zipfel

Date Published: 1st Sep 2018

Journal: Front Immunol

Abstract (Expand)

As a part of the complement system, factor H regulates phagocytosis and helps differentiate between a body's own and foreign cells. Owing to mimicry efforts, some pathogenic microorganisms such as Candida albicans are able to bind factor H on their cell surfaces and, thus, become similar to host cells. This implies that the decision between self and foreign is not clear-cut, which leads to a classification problem for the immune system. Here, two different alleles determining the binding affinity of factor H are relevant. Those alleles differ in the SNP Y402H; they are known to be associated with susceptibility to certain diseases. Interestingly, the fraction of both alleles differs in ethnic groups. The game-theoretical model proposed in this article explains the coexistence of both alleles by a battle of the sexes game and investigates the trade-off between pathogen detection and protection of host cells. Further, we discuss the ethnicity-dependent frequencies of the alleles. Moreover, the model elucidates the mimicry efforts by pathogenic microorganisms.

Authors: S. Hummert, C. Glock, S. N. Lang, C. Hummert, Christine Skerka, Peter Zipfel, S. Germerodt, Stefan Schuster

Date Published: 4th May 2018

Journal: J R Soc Interface

Abstract (Expand)

Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.

Authors: C. Meinel, G. Sparta, H. M. Dahse, F. Horhold, R. Konig, M. Westermann, S. M. Coldewey, Z. Cseresnyes, Marc Thilo Figge, S. Hammerschmidt, Christine Skerka, Peter Zipfel

Date Published: 17th Jan 2018

Journal: J Infect Dis

Abstract (Expand)

The human plasma contact system is an immune surveillance system activated by the negatively charged surfaces of bacteria and fungi and includes the kallikrein-kinin, the coagulation, and the fibrinolytic systems. Previous work shows that the contact system also activates complement, and that plasma enzymes like kallikrein, plasmin, thrombin, and FXII are involved in the activation process. Here, we show for the first time that kallikrein cleaves the central complement component C3 directly to yield active components C3b and C3a. The cleavage site within C3 is identical to that recognized by the C3 convertase. Also, kallikrein-generated C3b forms C3 convertases, which trigger the C3 amplification loop. Since kallikrein also cleaves factor B to yield Bb and Ba, kallikrein alone can trigger complement activation. Kallikrein-generated C3 convertases are inhibited by factor H; thus, the kallikrein activation pathway merges with the amplification loop of the alternative pathway. Taken together, these data suggest that activation of the contact system locally enhances complement activation on cell surfaces. The human pathogenic microbe Candida albicans activates the contact system in normal human serum. However, C. albicans immediately recruits factor H to the surface, thereby evading the alternative and likely kallikrein-mediated complement pathways.

Authors: Sarah Irmscher, N. Doring, Luke Donald Halder, E. A. H. Jo, I. Kopka, C. Dunker, Ilse Jacobsen, S. Luo, Hortense Slevogt, S. Lorkowski, Niklas Beyersdorf, Peter Zipfel, Christine Skerka

Date Published: 14th Dec 2017

Journal: J Innate Immun

Abstract (Expand)

Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14(++)CD16(-)/CD14(+)CD16(+)) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation.

Authors: Luke Donald Halder, M. A. Abdelfatah, E. A. Jo, Ilse Jacobsen, M. Westermann, Niklas Beyersdorf, S. Lorkowski, Peter Zipfel, Christine Skerka

Date Published: 31st Jan 2017

Journal: Front Immunol

Abstract (Expand)

Microbial invaders are ubiquitously present and pose the constant risk of infections that are opposed by various defence mechanisms of the human immune system. A tight regulation of the immune response ensures clearance of microbial invaders and concomitantly limits host damage that is crucial for host viability. To investigate the counterplay of infection and inflammation, we simulated the invasion of the human-pathogenic fungus Aspergillus fumigatus in lung alveoli by evolutionary games on graphs. The layered structure of the innate immune system is represented by a sequence of games in the virtual model. We show that the inflammatory cascade of the immune response is essential for microbial clearance and that the inflammation level correlates with the infection-dose. At low infection-doses, corresponding to daily inhalation of conidia, the resident alveolar macrophages may be sufficient to clear infections, however, at higher infection-doses their primary task shifts towards recruitment of neutrophils to infection sites.

Authors: J. Pollmacher, Sandra Timme, Stefan Schuster, Axel Brakhage, Peter Zipfel, Marc Thilo Figge

Date Published: 13th Jun 2016

Journal: Sci Rep

Abstract (Expand)

The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.

Authors: Sybille Dühring, S. Germerodt, Christine Skerka, Peter Zipfel, Thomas Dandekar, Stefan Schuster

Date Published: 30th Jun 2015

Journal: Front Microbiol

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH