Publications

What is a Publication?
32 Publications visible to you, out of a total of 32

Abstract (Expand)

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.

Authors: P. Bacher, T. Hohnstein, E. Beerbaum, M. Rocker, M. G. Blango, S. Kaufmann, J. Rohmel, P. Eschenhagen, C. Grehn, K. Seidel, V. Rickerts, L. Lozza, U. Stervbo, M. Nienen, N. Babel, J. Milleck, M. Assenmacher, O. A. Cornely, M. Ziegler, H. Wisplinghoff, G. Heine, M. Worm, B. Siegmund, J. Maul, P. Creutz, C. Tabeling, C. Ruwwe-Glosenkamp, L. E. Sander, C. Knosalla, S. Brunke, B. Hube, O. Kniemeyer, A. A. Brakhage, C. Schwarz, A. Scheffold

Date Published: 7th Mar 2019

Publication Type: Not specified

Abstract (Expand)

Clearance of invading microbes requires phagocytes of the innate immune system. However, successful pathogens have evolved sophisticated strategies to evade immune killing. The opportunistic human fungal pathogen Candida albicans is efficiently phagocytosed by macrophages, but causes inflammasome activation, host cytolysis, and escapes after hypha formation. Previous studies suggest that macrophage lysis by C. albicans results from early inflammasome-dependent cell death (pyroptosis), late damage due to glucose depletion and membrane piercing by growing hyphae. Here we show that Candidalysin, a cytolytic peptide toxin encoded by the hypha-associated gene ECE1, is both a central trigger for NLRP3 inflammasome-dependent caspase-1 activation via potassium efflux and a key driver of inflammasome-independent cytolysis of macrophages and dendritic cells upon infection with C. albicans. This suggests that Candidalysin-induced cell damage is a third mechanism of C. albicans-mediated mononuclear phagocyte cell death in addition to damage caused by pyroptosis and the growth of glucose-consuming hyphae.

Authors: L. Kasper, A. Konig, P. A. Koenig, M. S. Gresnigt, J. Westman, R. A. Drummond, M. S. Lionakis, O. Gross, J. Ruland, J. R. Naglik, B. Hube

Date Published: 15th Oct 2018

Publication Type: Not specified

Abstract (Expand)

Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.

Authors: S. Allert, T. M. Forster, C. M. Svensson, J. P. Richardson, T. Pawlik, B. Hebecker, S. Rudolphi, M. Juraschitz, M. Schaller, M. Blagojevic, J. Morschhauser, M. T. Figge, I. D. Jacobsen, J. R. Naglik, L. Kasper, S. Mogavero, B. Hube

Date Published: 5th Jun 2018

Publication Type: Not specified

Abstract (Expand)

The metabolic flexibility of the opportunistic fungal pathogen Candida albicans is important for colonisation and infection of different host niches. Complex regulatory networks, in which protein kinases play central roles, link metabolism and other virulence-associated traits, such as filamentous growth and stress resistance, and thereby control commensalism and pathogenicity. By screening a protein kinase deletion mutant library that was generated in the present work using an improved SAT1 flipper cassette, we found that the previously uncharacterised kinase Sak1 is a key upstream activator of the protein kinase Snf1, a highly conserved regulator of nutrient stress responses that is essential for viability in C. albicans. The sak1Delta mutants failed to grow on many alternative carbon sources and were hypersensitive to cell wall/membrane stress. These phenotypes were mirrored in mutants lacking other subunits of the SNF1 complex and partially compensated by a hyperactive form of Snf1. Transcriptional profiling of sak1Delta mutants showed that Sak1 ensures basal expression of glyoxylate cycle and gluconeogenesis genes even in glucose-rich media and thereby contributes to the metabolic plasticity of C. albicans. In a mouse model of gastrointestinal colonisation, sak1Delta mutants were rapidly outcompeted by wild-type cells, demonstrating that Sak1 is essential for the in vivo fitness of C. albicans.

Authors: B. Ramirez-Zavala, A. Mottola, J. Haubenreisser, S. Schneider, S. Allert, S. Brunke, K. Ohlsen, B. Hube, J. Morschhauser

Date Published: 25th Mar 2017

Publication Type: Not specified

Abstract (Expand)

During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.

Authors: T. Luo, T. Kruger, U. Knupfer, L. Kasper, N. Wielsch, B. Hube, A. Kortgen, M. Bauer, E. J. Giamarellos-Bourboulis, G. Dimopoulos, A. A. Brakhage, O. Kniemeyer

Date Published: 5th Aug 2016

Publication Type: Not specified

Abstract (Expand)

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.

Authors: D. L. Moyes, D. Wilson, J. P. Richardson, S. Mogavero, S. X. Tang, J. Wernecke, S. Hofs, R. L. Gratacap, J. Robbins, M. Runglall, C. Murciano, M. Blagojevic, S. Thavaraj, , B. Hebecker, , G. Vizcay, S. I. Iancu, N. Kichik, A. Hader, , T. Luo, T. Kruger, O. Kniemeyer, E. Cota, O. Bader, R. T. Wheeler, T. Gutsmann, , J. R. Naglik

Date Published: 30th Mar 2016

Publication Type: Not specified

Abstract (Expand)

Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.

Authors: M. Polke, ,

Date Published: 24th Feb 2015

Publication Type: Not specified

Abstract (Expand)

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Delta/efg1Delta mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Delta/efg1Delta strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

Authors: A. Wartenberg, , R. Martin, M. Schreiner, F. Horn, , S. Jenull, , K. Kuchler, , , A. Forche, C. d'Enfert, S. Brunke,

Date Published: 4th Dec 2014

Publication Type: Not specified

Abstract (Expand)

Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.

Authors: I. V. Ene, S. Brunke, A. J. Brown,

Date Published: 4th Sep 2014

Publication Type: Not specified

Abstract (Expand)

OBJECTIVES: Candida albicans is an important fungal pathogen that can cause life-threatening disseminated infections. To determine the efficacy of therapy in murine models, a determination of renal fungal burden as cfu is commonly used. However, this approach provides only a snapshot of the current situation in an individual animal and cryptic sites of infection may easily be missed. Thus, we aimed to develop real-time non-invasive imaging to monitor infection in vivo. METHODS: Bioluminescent C. albicans reporter strains were developed based on a bioinformatical approach for codon optimization. The reporter strains were analysed in vitro and in vivo in the murine model of systemic candidiasis. RESULTS: Reporter strains allowed the in vivo monitoring of infection and a determination of fungal burden, with a high correlation between bioluminescence and cfu count. We confirmed the kidney as the main target organ but additionally observed the translocation of C. albicans to the urinary bladder. The treatment of infected mice with caspofungin and fluconazole significantly improved the clinical outcome and clearance of C. albicans from the kidneys; however, unexpectedly, viable fungal cells persisted in the gall bladder. Fungi were secreted with bile and detected in the faeces, implicating the gall bladder as a reservoir for colonization by C. albicans after antifungal therapy. Bile extracts significantly decreased the susceptibility of C. albicans to various antifungals in vitro, thereby probably contributing to its persistence. CONCLUSIONS: Using in vivo imaging, we identified cryptic sites of infection and persistence of C. albicans in the gall bladder during otherwise effective antifungal treatment. Bile appears to directly interfere with antifungal activity.

Authors: , A. Luttich, , ,

Date Published: 20th Jun 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH