Publications

What is a Publication?
58 Publications visible to you, out of a total of 58

Abstract (Expand)

Murine infection models are widely used to study systemic candidiasis caused by C. albicans. Whole-blood models can help to elucidate host-pathogens interactions and have been used for several Candida species in human blood. We adapted the human whole-blood model to murine blood. Unlike human blood, murine blood was unable to reduce fungal burden and more substantial filamentation of C. albicans was observed. This coincided with less fungal association with leukocytes, especially neutrophils. The lower neutrophil number in murine blood only partially explains insufficient infection and filamentation control, as spiking with murine neutrophils had only limited effects on fungal killing. Furthermore, increased fungal survival is not mediated by enhanced filamentation, as a filament-deficient mutant was likewise not eliminated. We also observed host-dependent differences for interaction of platelets with C. albicans, showing enhanced platelet aggregation, adhesion and activation in murine blood. For human blood, opsonization was shown to decrease platelet interaction suggesting that complement factors interfere with fungus-to-platelet binding. Our results reveal substantial differences between murine and human whole-blood models infected with C. albicans and thereby demonstrate limitations in the translatability of this ex vivo model between hosts.

Authors: S. Machata, S. Sreekantapuram, K. Hunniger, O. Kurzai, C. Dunker, K. Schubert, W. Kruger, B. Schulze-Richter, C. Speth, G. Rambach, I. D. Jacobsen

Date Published: 1st Feb 2021

Publication Type: Not specified

Abstract (Expand)

The PspC and Hic proteins of Streptococcus pneumoniae are some of the most variable microbial immune evasion proteins identified to date. Due to structural similarities and conserved binding profiles, it was assumed for a long time that these pneumococcal surface proteins represent a protein family comprised of eleven subgroups. Recently, however, the evaluation of more proteins revealed a greater diversity of individual proteins. In contrast to previous assumptions a pattern evaluation of six PspC and five Hic variants, each representing one of the previously defined subgroups, revealed distinct structural and likely functionally regions of the proteins, and identified nine new domains and new domain alternates. Several domains are unique to PspC and Hic variants, while other domains are also present in other virulence factors encoded by pneumococci and other bacterial pathogens. This knowledge improved pattern evaluation at the level of full-length proteins, allowed a sequence comparison at the domain level and identified domains with a modular composition. This novel strategy increased understanding of individual proteins variability and modular domain composition, enabled a structural and functional characterization at the domain level and furthermore revealed substantial structural differences between PspC and Hic proteins. Given the exceptional genomic diversity of the multifunctional PspC and Hic proteins a detailed structural and functional evaluation need to be performed at the strain level. Such knowledge will also be useful for molecular strain typing and characterizing PspC and Hic proteins from new clinical S. pneumoniae strains.

Authors: S. Du, C. Vilhena, S. King, A. Sahagun-Ruiz, S. Hammerschmidt, C. Skerka, P. F. Zipfel

Date Published: 18th Jan 2021

Publication Type: Not specified

Abstract (Expand)

Burn wounds are highly susceptible sites for colonization and infection by bacteria and fungi. Large wound surface, impaired local immunity, and broad-spectrum antibiotic therapy support growth of opportunistic fungi such as Candida albicans, which may lead to invasive candidiasis. Currently, it remains unknown whether depressed host defenses or fungal virulence drive the progression of burn wound candidiasis. Here we established an ex vivo burn wound model, where wounds were inflicted by applying preheated soldering iron to human skin explants, resulting in highly reproducible deep second-degree burn wounds. Eschar removal by debridement allowed for deeper C. albicans penetration into the burned tissue associated with prominent filamentation. Active migration of resident tissue neutrophils towards the damaged tissue and release of pro-inflammatory cytokine IL-1beta accompanied the burn. The neutrophil recruitment was further increased upon supplementation of the model with fresh immune cells. Wound area and depth decreased over time, indicating healing of the damaged tissue. Importantly, prominent neutrophil presence at the infected site correlated to the limited penetration of C. albicans into the burned tissue. Altogether, we established a reproducible burn wound model of candidiasis using ex vivo human skin explants, where immune responses actively control the progression of infection and promote tissue healing.

Authors: C. von Muller, F. Bulman, L. Wagner, D. Rosenberger, A. Marolda, O. Kurzai, P. Eissmann, I. D. Jacobsen, B. Perner, P. Hemmerich, S. Vylkova

Date Published: 11th Dec 2020

Publication Type: Not specified

Abstract (Expand)

Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.

Authors: C. d'Enfert, A. K. Kaune, L. R. Alaban, S. Chakraborty, N. Cole, M. Delavy, D. Kosmala, B. Marsaux, R. Frois-Martins, M. Morelli, D. Rosati, M. Valentine, Z. Xie, Y. Emritloll, P. A. Warn, F. Bequet, M. E. Bougnoux, S. Bornes, M. S. Gresnigt, B. Hube, I. D. Jacobsen, M. Legrand, S. Leibundgut-Landmann, C. Manichanh, C. A. Munro, M. G. Netea, K. Queiroz, K. Roget, V. Thomas, C. Thoral, P. Van den Abbeele, A. W. Walker, A. J. P. Brown

Date Published: 24th Nov 2020

Publication Type: Not specified

Abstract (Expand)

The complement system is part of the innate immune system and plays an important role in the host defense against infectious pathogens. One of the main effects is the opsonization of foreign invaders and subsequent uptake by phagocytosis. Due to the continuous default basal level of active complement molecules, a tight regulation is required to protect the body's own cells (self cells) from opsonization and from complement damage. A major complement regulator is Factor H, which is recruited from the fluid phase and attaches to cell surfaces where it effectively controls complement activation. Besides self cells, pathogens also have the ability to bind Factor H; they can thus escape opsonization and phagocytosis causing severe infections. In order to advance our understanding of the opsonization process at a quantitative level, we developed a mathematical model for the dynamics of the complement system-termed DynaCoSys model-that is based on ordinary differential equations for cell surface-bound molecules and on partial differential equations for concentration profiles of the fluid phase molecules in the environment of cells. This hybrid differential equation approach allows to model the complement cascade focusing on the role of active C3b in the fluid phase and on the cell surface as well as on its inactivation on the cell surface. The DynaCoSys model enables us to quantitatively predict the conditions under which Factor H mediated complement evasion occurs. Furthermore, investigating the quantitative impact of model parameters by a sensitivity analysis, we identify the driving processes of complement activation and regulation in both the self and non-self regime. The two regimes are defined by a critical Factor H concentration on the cell surface and we use the model to investigate the differential impact of complement model parameters on this threshold value. The dynamic modeling on the surface of pathogens are further relevant to understand pathophysiological situations where Factor H mutants and defective Factor H binding to target surfaces results in pathophysiology such as renal and retinal disease. In the future, this DynaCoSys model will be extended to also enable evaluating treatment strategies of complement-related diseases.

Authors: A. Tille, T. Lehnert, P. F. Zipfel, M. T. Figge

Date Published: 5th Oct 2020

Publication Type: Not specified

Abstract (Expand)

Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-beta-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.

Authors: J. Matthias, S. Heink, F. Picard, J. Zeitrag, A. Kolz, Y. Y. Chao, D. Soll, G. P. de Almeida, E. Glasmacher, I. D. Jacobsen, T. Riedel, A. Peters, S. Floess, J. Huehn, D. Baumjohann, M. Huber, T. Korn, C. E. Zielinski

Date Published: 1st Sep 2020

Publication Type: Not specified

Abstract (Expand)

Typically, established lab strains are widely used to study host-pathogen interactions. However, to better reflect the infection process, the experimental use of clinical isolates has come more into focus. Here, we analyzed the interaction of multiple vaginal isolates of the opportunistic fungal pathogen Candida albicans, the most common cause of vulvovaginal candidiasis in women, with key players of the host immune system: macrophages. We tested several strains isolated from asymptomatic or symptomatic women with acute and recurrent infections. While all clinical strains showed a response similar to the commonly used lab strain SC5314 in various in vitro assays, they displayed remarkable differences during interaction with macrophages. This coincided with significantly reduced beta-glucan exposure on the cell surface, which appeared to be a shared property among the tested vaginal strains for yeast extract/peptone/dextrose-grown cells, which is partly lost when the isolates faced vaginal niche-like nutrient conditions. However, macrophage damage, survival of phagocytosis, and filamentation capacities were highly strain-specific. These results highlight the high heterogeneity of C. albicans strains in host-pathogen interactions, which have to be taken into account to bridge the gap between laboratory-gained data and disease-related outcomes in an actual patient.IMPORTANCE Vulvovaginal candidiasis is one of the most common fungal infections in humans with Candida albicans as the major causative agent. This study is the first to compare clinical vaginal isolates of defined patient groups in their interaction with macrophages, highlighting the vastly different outcomes in comparison to a laboratory strain using commonly applied virulence-determining assays.

Authors: F. Gerwien, C. Dunker, P. Brandt, E. Garbe, I. D. Jacobsen, S. Vylkova

Date Published: 19th Aug 2020

Publication Type: Not specified

Abstract (Expand)

The fungal pathogen Candida albicans forms polymorphic biofilms where hyphal morphogenesis and metabolic adaptation are tightly coordinated by a complex intertwined network of transcription factors. The sensing and metabolism of amino acids play important roles during various phases of biofilm development - from adhesion to maturation. Stp2 is a transcription factor that activates the expression of amino acid permease genes and is required for environmental alkalinization and hyphal growth in vitro and during macrophage phagocytosis. While it is well established that Stp2 is activated in response to external amino acids, its role in biofilm formation remains unknown. In addition to widely used techniques, we applied newly developed approaches for automated image analysis to quantify Stp2-regulated filamentation and biofilm growth. Our results show that in the stp2Delta deletion mutant adherence to abiotic surfaces and initial germ tube formation were strongly impaired, but formed mature biofilms with cell density and morphological structures comparable to the control strains. Stp2-dependent nutrient adaptation appeared to play an important role in biofilm development: stp2Delta biofilms formed under continuous nutrient flow displayed an overall reduction in biofilm formation, whereas under steady conditions the mutant strain formed biofilms with lower metabolic activity, resulting in increased cell survival and biofilm longevity. A deletion of STP2 led to increased rapamycin susceptibility and transcriptional activation of GCN4, the transcriptional regulator of the general amino acid control pathway, demonstrating a connection of Stp2 to other nutrient-responsive pathways. In summary, the transcription factor Stp2 is important for C. albicans biofilm formation, where it contributes to adherence and induction of morphogenesis, and mediates nutrient adaption and cell longevity in mature biofilms.

Authors: B. Bottcher, B. Hoffmann, E. Garbe, T. Weise, Z. Cseresnyes, P. Brandt, S. Dietrich, D. Driesch, M. T. Figge, S. Vylkova

Date Published: 20th May 2020

Publication Type: Not specified

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.

Authors: P. Dasari, N. Koleci, I. A. Shopova, D. Wartenberg, N. Beyersdorf, S. Dietrich, A. Sahagun-Ruiz, M. T. Figge, C. Skerka, A. A. Brakhage, P. F. Zipfel

Date Published: 12th Dec 2019

Publication Type: Not specified

Abstract (Expand)

During somatic hypermutation (SHM) of Ig genes in germinal center B cells, lesions introduced by activation-induced cytidine deaminase are processed by multiple error-prone repair pathways. Although error-free repair by homologous recombination (HR) is crucial to prevent excessive DNA strand breakage at activation-induced cytidine deaminase off-target genes, its role at the hypermutating Ig locus in the germinal center is unexplored. Using B cell-specific inactivation of the critical HR factor Brca2, we detected decreased proliferation, survival, and thereby class switching of ex vivo-activated B cells. Intriguingly, an HR defect allowed for a germinal center reaction and affinity maturation in vivo, albeit at reduced amounts. Analysis of SHM revealed that a certain fraction of DNA lesions at C:G bp was indeed repaired in an error-free manner via Brca2 instead of being processed by error-prone translesion polymerases. By applying a novel pseudo-time in silico analysis of mutational processes, we found that the activity of A:T mutagenesis during SHM increased during a germinal center reaction, but this was in part defective in Brca2-deficient mice. These mutation pattern changes in Brca2-deficient B cells were mostly specific for the Ig V region, suggesting a local or time-dependent need for recombination repair to survive high rates of SHM and especially A:T mutagenesis.

Authors: G. Hirth, C. M. Svensson, K. Bottcher, S. Ullrich, M. T. Figge, B. Jungnickel

Date Published: 15th Sep 2019

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH