Publications

What is a Publication?
6 Publications visible to you, out of a total of 6

Abstract (Expand)

Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-gamma, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients.

Authors: B. Tappe, C. D. Lauruschkat, L. Strobel, J. Pantaleon Garcia, O. Kurzai, S. Rebhan, S. Kraus, E. Pfeuffer-Jovic, L. Bussemer, L. Possler, M. Held, K. Hunniger, O. Kniemeyer, S. Schauble, A. A. Brakhage, G. Panagiotou, P. L. White, H. Einsele, J. Loffler, S. Wurster

Date Published: 2nd Sep 2022

Publication Type: Journal

Abstract (Expand)

High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens. For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-kappaB (nuclear factor kappaB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral clearance by counteracting viral nucleic acid-induced activation of type I interferon signaling. Together, the analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance of post-transplant infections.

Authors: B. Seelbinder, J. Wallstabe, L. Marischen, E. Weiss, S. Wurster, L. Page, C. Loffler, L. Bussemer, A. L. Schmitt, T. Wolf, J. Linde, L. Cicin-Sain, J. Becker, U. Kalinke, J. Vogel, G. Panagiotou, H. Einsele, A. J. Westermann, S. Schauble, J. Loeffler

Date Published: 17th Nov 2020

Publication Type: Not specified

Abstract (Expand)

Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1alpha, MIP-1beta, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56(bright)CD16(dim) cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1alpha, MIP-1beta, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility.

Authors: E. Weiss, J. Schlegel, U. Terpitz, M. Weber, J. Linde, A. L. Schmitt, K. Hunniger, L. Marischen, F. Gamon, J. Bauer, C. Loffler, O. Kurzai, C. O. Morton, M. Sauer, H. Einsele, J. Loeffler

Date Published: 5th Oct 2020

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Candida albicans and Candida glabrata are the 2 most prevalent Candida species causing bloodstream infections. Patterns of innate immune activation triggered by the 2 fungi differ considerably. METHODS: To analyze human natural killer (NK) cell activation by both species, we performed ex vivo whole-blood infection assays and confrontation assays with primary human NK cells. RESULTS: C. albicans was a stronger activator for isolated human NK cells than C. glabrata. In contrast, activation of blood NK cells, characterized by an upregulated surface exposure of early activation antigen CD69 and death receptor ligand TRAIL, as well as interferon-gamma (IFN-gamma) secretion, was more pronounced during C. glabrata infection. NK cell activation in blood is mediated by humoral mediators released by other immune cells and does not depend on direct activation by fungal cells. Cross-talk between Candida-confronted monocyte-derived dendritic cells (moDC) and NK cells resulted in the same NK activation phenotype as NK cells in human blood. Blocking experiments and cytokine substitution identified interleukin-12 as a critical mediator in regulation of primary NK cells by moDC. CONCLUSIONS: Activation of human NK cells in response to Candida in human blood mainly occurs indirectly by mediators released from monocytic cells.

Authors: A. Marolda, K. Hunniger, S. Bottcher, W. Vivas, J. Loffler, M. T. Figge, O. Kurzai

Date Published: 11th Jun 2020

Publication Type: Not specified

Abstract (Expand)

Invasive aspergillosis (IA) is a life-threatening complication among allogeneic hematopoietic stem cell transplant (alloSCT) recipients. Despite well known risk factors and different available assays, diagnosis of invasive aspergillosis remains challenging. 103 clinical variables from patients with hematological malignancies and subsequent alloSCT were collected. Associations between collected variables and patients with (n = 36) and without IA (n = 36) were investigated by applying univariate and multivariable logistic regression. The predictive power of the final model was tested in an independent patient cohort (23 IA cases and 25 control patients). Findings were investigated further by in vitro studies, which analysed the effect of etanercept on A. fumigatus-stimulated macrophages at the gene expression and cytokine secretion. Additionally, the release of C-X-C motif chemokine ligand 10 (CXCL10) in patient sera was studied. Low monocyte concentration (p = 4.8 x 10(-06)), severe GvHD of the gut (grade 2-4) (p = 1.08 x 10(-02)) and etanercept treatment of GvHD (p = 3.5 x 10(-03)) were significantly associated with IA. Our studies showed that etanercept lowers CXCL10 concentrations in vitro and ex vivo and down-regulates genes involved in immune responses and TNF-alpha signaling. Our study offers clinicians new information regarding risk factors for IA including low monocyte counts and administration of etanercept. After necessary validation, such information may be used for decision making regarding antifungal prophylaxis or closely monitoring patients at risk.

Authors: T. Zoran, M. Weber, J. Springer, P. L. White, J. Bauer, A. Schober, C. Loffler, B. Seelbinder, K. Hunniger, O. Kurzai, A. Scherag, S. Schauble, C. O. Morton, H. Einsele, J. Linde, J. Loffler

Date Published: 21st Nov 2019

Publication Type: Not specified

Abstract (Expand)

Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus. The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4, and SPN, on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during fungal infections and proposes novel microRNAs that could be experimentally verified.

Authors: A. Dix, K. Czakai, I. Leonhardt, K. Schaferhoff, M. Bonin, R. Guthke, H. Einsele, O. Kurzai, J. Loffler, J. Linde

Date Published: 11th Mar 2017

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH