Publications

What is a Publication?
25 Publications visible to you, out of a total of 25

Abstract (Expand)

BACKGROUND: Aspergillus fumigatus is a major fungal pathogen that causes severe problems due to its increasing resistance to many therapeutic agents. Fludioxonil is a compound that triggers a lethal activation of the fungal-specific High Osmolarity Glycerol pathway. Its pronounced antifungal activity against A. fumigatus and other pathogenic molds renders this agent an attractive lead substance for the development of new therapeutics. The group III hydride histidine kinase TcsC and its downstream target Skn7 are key elements of the multistep phosphorelay that represents the initial section of the High Osmolarity Glycerol pathway. Loss of tcsC results in resistance to fludioxonil, whereas a Deltaskn7 mutant is partially, but not completely resistant. RESULTS: In this study, we compared the fludioxonil-induced transcriptional responses in the DeltatcsC and Deltaskn7 mutant and their parental A. fumigatus strain. The number of differentially expressed genes correlates well with the susceptibility level of the individual strains. The wild type and, to a lesser extend also the Deltaskn7 mutant, showed a multi-faceted stress response involving genes linked to ribosomal and peroxisomal function, iron homeostasis and oxidative stress. A marked difference between the sensitive wild type and the largely resistant Deltaskn7 mutant was evident for many cell wall-related genes and in particular those involved in the biosynthesis of chitin. Biochemical data corroborate this differential gene expression that does not occur in response to hyperosmotic stress. CONCLUSIONS: Our data reveal that fludioxonil induces a strong and TcsC-dependent stress that affects many aspects of the cellular machinery. The data also demonstrate a link between Skn7 and the cell wall reorganizations that foster the characteristic ballooning and the subsequent lysis of fludioxonil-treated cells.

Authors: S. Schruefer, A. Pschibul, S. S. W. Wong, T. Sae-Ong, T. Wolf, S. Schauble, G. Panagiotou, A. A. Brakhage, V. Aimanianda, O. Kniemeyer, F. Ebel

Date Published: 14th Nov 2023

Publication Type: Journal

Abstract (Expand)

Aspergillus fumigatus, an opportunistic human pathogen, frequently infects the lungs of people with cystic fibrosis and is one of the most common causes of infectious-disease death in immunocompromised patients. Here, we construct 252 strain-specific, genome-scale metabolic models of this important fungal pathogen to study and better understand the metabolic component of its pathogenic versatility. The models show that 23.1% of A. fumigatus metabolic reactions are not conserved across strains and are mainly associated with amino acid, nucleotide, and nitrogen metabolism. Profiles of non-conserved reactions and growth-supporting reaction fluxes are sufficient to differentiate strains, for example by environmental or clinical origin. In addition, shotgun metagenomics analysis of sputum from 40 cystic fibrosis patients (15 females, 25 males) before and after diagnosis with an A. fumigatus colonization suggests that the fungus shapes the lung microbiome towards a more beneficial fungal growth environment associated with aromatic amino acid availability and the shikimate pathway. Our findings are starting points for the development of drugs or microbiome intervention strategies targeting fungal metabolic needs for survival and colonization in the non-native environment of the human lung.

Authors: M. H. Mirhakkak, X. Chen, Y. Ni, T. Heinekamp, T. Sae-Ong, L. L. Xu, O. Kurzai, A. E. Barber, A. A. Brakhage, S. Boutin, S. Schauble, G. Panagiotou

Date Published: 20th Jul 2023

Publication Type: Journal

Abstract (Expand)

The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.

Authors: A. A. Kelani, A. Bruch, F. Rivieccio, C. Visser, T. Kruger, D. Weaver, X. Pan, S. Schauble, G. Panagiotou, O. Kniemeyer, M. J. Bromley, P. Bowyer, A. E. Barber, A. A. Brakhage, M. G. Blango

Date Published: 19th Jun 2023

Publication Type: Journal

Abstract (Expand)

Candida auris, a multidrug-resistant human fungal pathogen that causes outbreaks of invasive infections, emerged as four distinct geographical clades. Previous studies identified genomic and proteomic differences in nutrient utilization on comparison to Candida albicans, suggesting that certain metabolic features may contribute to C. auris emergence. Since no high-throughput clade-specific metabolic characterization has been described yet, we performed a phenotypic screening of C. auris strains from all 4 clades on 664 nutrients, 120 chemicals, and 24 stressors. We identified common and clade- or strain-specific responses, including the preferred utilization of various dipeptides as nitrogen source and the inability of the clade II isolate AR 0381 to withstand chemical stress. Further analysis of the metabolic properties of C. auris isolates showed robust growth on intermediates of the tricarboxylic acid cycle, such as citrate and succinic and malic acids. However, there was reduced or no growth on pyruvate, lactic acid, or acetate, likely due to the lack of the monocarboxylic acid transporter Jen1, which is conserved in most pathogenic Candida species. Comparison of C. auris and C. albicans transcriptomes of cells grown on alternative carbon sources and dipeptides as a nitrogen source revealed common as well as species-unique responses. C. auris induced a significant number of genes with no ortholog in C. albicans, e.g., genes similar to the nicotinic acid transporter TNA1 (alternative carbon sources) and to the oligopeptide transporter (OPT) family (dipeptides). Thus, C. auris possesses unique metabolic features which could have contributed to its emergence as a pathogen. IMPORTANCE Four main clades of the emerging, multidrug-resistant human pathogen Candida auris have been identified, and they differ in their susceptibilities to antifungals and disinfectants. Moreover, clade- and strain-specific metabolic differences have been identified, but a comprehensive overview of nutritional characteristics and resistance to various stressors is missing. Here, we performed high-throughput phenotypic characterization of C. auris on various nutrients, stressors, and chemicals and obtained transcriptomes of cells grown on selected nutrients. The generated data sets identified multiple clade- and strain-specific phenotypes and induction of C. auris-specific metabolic genes, showing unique metabolic properties. The presented work provides a large amount of information for further investigations that could explain the role of metabolism in emergence and pathogenicity of this multidrug-resistant fungus.

Authors: P. Brandt, M. H. Mirhakkak, L. Wagner, D. Driesch, A. Moslinger, P. Fander, S. Schauble, G. Panagiotou, S. Vylkova

Date Published: 15th Jun 2023

Publication Type: Journal

Abstract (Expand)

Innate immune responses vary by pathogen and host genetics. We analyze quantitative trait loci (eQTLs) and transcriptomes of monocytes from 215 individuals stimulated by fungal, Gram-negative or Gram-positive bacterial pathogens. We identify conserved monocyte responses to bacterial pathogens and a distinct antifungal response. These include 745 response eQTLs (reQTLs) and corresponding genes with pathogen-specific effects, which we find first in samples of male donors and subsequently confirm for selected reQTLs in females. reQTLs affect predominantly upregulated genes that regulate immune response via e.g., NOD-like, C-type lectin, Toll-like and complement receptor-signaling pathways. Hence, reQTLs provide a functional explanation for individual differences in innate response patterns. Our identified reQTLs are also associated with cancer, autoimmunity, inflammatory and infectious diseases as shown by external genome-wide association studies. Thus, reQTLs help to explain interindividual variation in immune response to infection and provide candidate genes for variants associated with a range of diseases.

Authors: A. Hader, S. Schauble, J. Gehlen, N. Thielemann, B. C. Buerfent, V. Schuller, T. Hess, T. Wolf, J. Schroder, M. Weber, K. Hunniger, J. Loffler, S. Vylkova, G. Panagiotou, J. Schumacher, O. Kurzai

Date Published: 5th Jun 2023

Publication Type: Journal

Abstract (Expand)

Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-gamma, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients.

Authors: B. Tappe, C. D. Lauruschkat, L. Strobel, J. Pantaleon Garcia, O. Kurzai, S. Rebhan, S. Kraus, E. Pfeuffer-Jovic, L. Bussemer, L. Possler, M. Held, K. Hunniger, O. Kniemeyer, S. Schauble, A. A. Brakhage, G. Panagiotou, P. L. White, H. Einsele, J. Loffler, S. Wurster

Date Published: 2nd Sep 2022

Publication Type: Journal

Abstract (Expand)

Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.

Authors: R. Alonso-Roman, A. Last, M. H. Mirhakkak, J. L. Sprague, L. Moller, P. Grossmann, K. Graf, R. Gratz, S. Mogavero, S. Vylkova, G. Panagiotou, S. Schauble, B. Hube, M. S. Gresnigt

Date Published: 9th Jun 2022

Publication Type: Journal

Abstract (Expand)

Protein kinases play a crucial role in regulating cellular processes such as growth, proliferation, environmental adaptation and stress responses. Serine-arginine (SR) protein kinases are highly conserved in eukaryotes and regulate fundamental processes such as constitutive and alternative splicing, mRNA processing and ion homeostasis. The Candida albicans genome encodes two (Sky1, Sky2) and the Candida glabrata genome has one homolog (Sky1) of the human SR protein kinase 1, but their functions have not yet been investigated. We used deletion strains of the corresponding genes in both fungi to study their cellular functions. C. glabrata and C. albicans strains lacking SKY1 exhibited higher resistance to osmotic stress and toxic polyamine concentrations, similar to Saccharomyces cerevisiae sky1Delta mutants. Deletion of SKY2 in C. albicans resulted in impaired utilization of various dipeptides as the sole nitrogen source. Subsequent phosphoproteomic analysis identified the di- and tripeptide transporter Ptr22 as a potential Sky2 substrate. Sky2 seems to be involved in Ptr22 regulation since overexpression of PTR22 in the sky2Delta mutant restored the ability to grow on dipeptides and made the cells more susceptible to the dipeptide antifungals Polyoxin D and Nikkomycin Z. Altogether, our results demonstrate that C. albicans and C. glabrata Sky1 protein kinases are functionally similar to Sky1 in S. cerevisiae, whereas C. albicans Sky2, a unique kinase of the CTG clade, likely regulates dipeptide uptake via Ptr22.

Authors: P. Brandt, F. Gerwien, L. Wagner, T. Kruger, B. Ramirez-Zavala, M. H. Mirhakkak, S. Schauble, O. Kniemeyer, G. Panagiotou, A. A. Brakhage, J. Morschhauser, S. Vylkova

Date Published: 23rd May 2022

Publication Type: Journal

Abstract (Expand)

Candida species are a major cause of invasive fungal infections. While Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are the most dominant species causing life-threatening candidiasis, C. auris recently emerged as a new species causing invasive infections with high rates of clinical treatment failures. To mimic initial phases of systemic Candida infections with dissemination via the bloodstream and to elucidate the pathogenic potential of C. auris, we used an ex vivo whole blood infection model. Similar to other clinically relevant Candida spp., C. auris is efficiently killed in human blood, but showed characteristic patterns of immune cell association, survival rates, and cytokine induction. Dual-species transcriptional profiling of C. auris-infected blood revealed a unique C. auris gene expression program during infection, while the host response proofed similar and conserved compared to other Candida species. C. auris-specific responses included adaptation and survival strategies, such as counteracting oxidative burst of immune cells, but also expression of potential virulence factors, (drug) transporters, and cell surface-associated genes. Despite comparable pathogenicity to other Candida species in our model, C. auris-specific transcriptional adaptations as well as its increased stress resistance and long-term environmental survival, likely contribute to the high risk of contamination and distribution in a nosocomial setting. Moreover, infections of neutrophils with pre-starved C. auris cells suggest that environmental preconditioning can have modulatory effects on the early host interaction. In summary, we present novel insights into C. auris pathogenicity, revealing adaptations to human blood and environmental niches distinctive from other Candida species.

Authors: S. Allert, D. Schulz, P. Kammer, P. Grossmann, T. Wolf, S. Schauble, G. Panagiotou, S. Brunke, B. Hube

Date Published: 10th Feb 2022

Publication Type: Journal

Abstract (Expand)

Investigating metabolic functional capability of a human gut microbiome enables the quantification of microbiome changes, which can cause a phenotypic change of host physiology and disease. One possible way to estimate the functional capability of a microbial community is through inferring metagenomic content from 16S rRNA gene sequences. Genome-scale models (GEMs) can be used as scaffold for functional estimation analysis at a systematic level, however up to date, there is no integrative toolbox based on GEMs for uncovering metabolic functions. Here, we developed the MetGEMs (metagenome-scale models) toolbox, an open-source application for inferring metabolic functions from 16S rRNA gene sequences to facilitate the study of the human gut microbiome by the wider scientific community. The developed toolbox was validated using shotgun metagenomic data and shown to be superior in predicting functional composition in human clinical samples compared to existing state-of-the-art tools. Therefore, the MetGEMs toolbox was subsequently applied for annotating putative enzyme functions and metabolic routes related in human disease using atopic dermatitis as a case study.

Authors: P. Patumcharoenpol, M. Nakphaichit, G. Panagiotou, A. Senavonge, N. Suratannon, W. Vongsangnak

Date Published: 6th Jan 2021

Publication Type: Journal

Powered by
(v.1.13.4)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH