Publications

What is a Publication?
32 Publications visible to you, out of a total of 32

Abstract (Expand)

Inference of inter-species gene regulatory networks based on gene expression data is an important computational method to predict pathogen-host interactions (PHIs). Both the experimental setup and the nature of PHIs exhibit certain characteristics. First, besides an environmental change, the battle between pathogen and host leads to a constantly changing environment and thus complex gene expression patterns. Second, there might be a delay until one of the organisms reacts. Third, toward later time points only one organism may survive leading to missing gene expression data of the other organism. Here, we account for PHI characteristics by extending NetGenerator, a network inference tool that predicts gene regulatory networks from gene expression time series data. We tested multiple modeling scenarios regarding the stimuli functions of the interaction network based on a benchmark example. We show that modeling perturbation of a PHI network by multiple stimuli better represents the underlying biological phenomena. Furthermore, we utilized the benchmark example to test the influence of missing data points on the inference performance. Our results suggest that PHI network inference with missing data is possible, but we recommend to provide complete time series data. Finally, we extended the NetGenerator tool to incorporate gene- and time point specific variances, because complex PHIs may lead to high variance in expression data. Sample variances are directly considered in the objective function of NetGenerator and indirectly by testing the robustness of interactions based on variance dependent disturbance of gene expression values. We evaluated the method of variance incorporation on dual RNA sequencing (RNA-Seq) data of Mus musculus dendritic cells incubated with Candida albicans and proofed our method by predicting previously verified PHIs as robust interactions.

Authors: S. Schulze, S. G. Henkel, D. Driesch, R. Guthke, J. Linde

Date Published: 6th Feb 2015

Publication Type: Not specified

Abstract (Expand)

The successful treatment of infectious diseases requires interdisciplinary studies of all aspects of infection processes. The overarching combination of experimental research and theoretical analysis in a systems biology approach can unravel mechanisms of complex interactions between pathogens and the human immune system. Taking into account spatial information is especially important in the context of infection, since the migratory behavior and spatial interactions of cells are often decisive for the outcome of the immune response. Spatial information is provided by image and video data that are acquired in microscopy experiments and that are at the heart of an image-based systems biology approach. This review demonstrates how image-based systems biology improves our understanding of infection processes. We discuss the three main steps of this approach--imaging, quantitative characterization, and modeling--and consider the application of these steps in the context of studying infection processes. After summarizing the most relevant microscopy and image analysis approaches, we discuss ways to quantify infection processes, and address a number of modeling techniques that exploit image-derived data to simulate host-pathogen interactions in silico.

Authors: A. Medyukhina, , Z. Mokhtari,

Date Published: 29th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points.

Authors: S. Brandes, Z. Mokhtari, F. Essig, , ,

Date Published: 8th Nov 2014

Publication Type: Not specified

Abstract (Expand)

Lichtheimia corymbifera is a ubiquitous soilborne zygomycete fungus, which is an opportunistic human pathogen in immunocompromised patients. The fungus can cause life-threatening diseases by attacking the lung during early stages of invasion and by disseminating during later phases causing systemic infection. Since infections have drastically increased during the last decades, it is a major goal to investigate the mechanisms underlying pathogenicity of L. corymbifera. One of the first barriers, which the fungus needs to cope with in the lung tissue, is phagocytosis by alveolar macrophages. Here, we report on phagocytosis assays for murine alveolar macrophages co-incubated with resting, swollen and opsonised spores of a virulent and an attenuated L. corymbifera strain. A major finding of this study is the significantly increased phagocytosis ratio of the virulent strain if compared to the attenuated strain. We quantify the phagocytosis by performing automated analysis of fluorescence microscopy images and by computing ratios for (i) fungal phagocytosis, (ii) fungal adhesion to phagocytes and (iii) fungal aggregation and spore cluster distribution in space. Automation of the image analysis yields objective results that overcome the disadvantages of manual analyses being time consuming, error-prone and subjective. Therefore, it can be expected that automated image analysis of confrontation assays will play a crucial role in future investigations of host-pathogen interactions.

Authors: , H. R. Park, H. M. Dahse, C. Skerka, K. Voigt,

Date Published: 1st Sep 2014

Publication Type: Not specified

Abstract (Expand)

Nitrogen is one of the key nutrients for microbial growth. During infection, pathogenic fungi like C. albicans need to acquire nitrogen from a broad range of different and changing sources inside the host. Detecting the available nitrogen sources and adjusting the expression of genes for their uptake and degradation is therefore crucial for survival and growth as well as for establishing an infection. Here, we analyzed the transcriptional response of C. albicans to nitrogen starvation and feeding with the infection-relevant nitrogen sources arginine and bovine serum albumin (BSA), representing amino acids and proteins, respectively. The response to nitrogen starvation was marked by an immediate repression of protein synthesis and an up-regulation of general amino acid permeases, as well as an up-regulation of autophagal processes in its later stages. Feeding with arginine led to a fast reduction in expression of general permeases for amino acids and to resumption of protein synthesis. The response to BSA feeding was generally slower, and was additionally characterized by an up-regulation of oligopeptide transporter genes. From time-series data, we inferred network interaction models for genes relevant in nitrogen detection and uptake. Each individual network was found to be largely specific for the experimental condition (starvation or feeding with arginine or BSA). In addition, we detected several novel connections between regulator and effector genes, with putative roles in nitrogen uptake. We conclude that C. albicans adopts a particular nitrogen response network, defined by sets of specific gene-gene connections for each environmental condition. All together, they form a grid of possible gene regulatory networks, increasing the transcriptional flexibility of C. albicans.

Authors: S. Ramachandra, , , , , S. Brunke

Date Published: 20th Mar 2014

Publication Type: Not specified

Abstract (Expand)

Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment-model-experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.

Authors: , T. Lehnert, K. Bieber, R. Martin, ,

Date Published: 20th Feb 2014

Publication Type: Not specified

Abstract (Expand)

Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.

Authors: M. Naseem, M. Kunz,

Date Published: 13th Feb 2014

Publication Type: Not specified

Abstract (Expand)

Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium.

Authors: F. Mech, D. Wilson, T. Lehnert, , M. Thilo Figge

Date Published: 20th Nov 2013

Publication Type: Not specified

Abstract

ABSTRACT:

Authors: Sebastian Müller, Clara Baldin, Marco Groth, Reinhard Guthke, Olaf Kniemeyer, Axel A Brakhage, Vito Valiante

Date Published: 2nd Oct 2012

Publication Type: Not specified

Abstract (Expand)

The ability to adapt to diverse micro-environmental challenges encountered within a host is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have quantified C. albicans and M. musculus gene expression dynamics during phagocytosis by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq. A robust network inference map was generated from this dataset using NetGenerator, predicting novel interactions between the host and the pathogen. We experimentally verified predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell wall was found to regulate the expression of fungal Hap3 target genes as predicted by the network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent manner, further suggesting a role for Mta2 in host-pathogen interplay as predicted in the network inference model. We propose an integrated model for the functionality of these sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering the immune response to the pathogen. We show the applicability of network inference to predict interactions between host-pathogen pairs, demonstrating the usefulness of this systems biology approach to decipher mechanisms of microbial pathogenesis.

Authors: L. Tierney, , S. Muller, S. Brunke, J. C. Molina, , U. Schock, , K. Kuchler

Date Published: 12th Mar 2012

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH