Publications

What is a Publication?
8 Publications visible to you, out of a total of 8

Abstract (Expand)

BACKGROUND: Aspergillus fumigatus is a major fungal pathogen that causes severe problems due to its increasing resistance to many therapeutic agents. Fludioxonil is a compound that triggers a lethal activation of the fungal-specific High Osmolarity Glycerol pathway. Its pronounced antifungal activity against A. fumigatus and other pathogenic molds renders this agent an attractive lead substance for the development of new therapeutics. The group III hydride histidine kinase TcsC and its downstream target Skn7 are key elements of the multistep phosphorelay that represents the initial section of the High Osmolarity Glycerol pathway. Loss of tcsC results in resistance to fludioxonil, whereas a Deltaskn7 mutant is partially, but not completely resistant. RESULTS: In this study, we compared the fludioxonil-induced transcriptional responses in the DeltatcsC and Deltaskn7 mutant and their parental A. fumigatus strain. The number of differentially expressed genes correlates well with the susceptibility level of the individual strains. The wild type and, to a lesser extend also the Deltaskn7 mutant, showed a multi-faceted stress response involving genes linked to ribosomal and peroxisomal function, iron homeostasis and oxidative stress. A marked difference between the sensitive wild type and the largely resistant Deltaskn7 mutant was evident for many cell wall-related genes and in particular those involved in the biosynthesis of chitin. Biochemical data corroborate this differential gene expression that does not occur in response to hyperosmotic stress. CONCLUSIONS: Our data reveal that fludioxonil induces a strong and TcsC-dependent stress that affects many aspects of the cellular machinery. The data also demonstrate a link between Skn7 and the cell wall reorganizations that foster the characteristic ballooning and the subsequent lysis of fludioxonil-treated cells.

Authors: S. Schruefer, A. Pschibul, S. S. W. Wong, T. Sae-Ong, T. Wolf, S. Schauble, G. Panagiotou, A. A. Brakhage, V. Aimanianda, O. Kniemeyer, F. Ebel

Date Published: 14th Nov 2023

Publication Type: Journal

Abstract (Expand)

Innate immune responses vary by pathogen and host genetics. We analyze quantitative trait loci (eQTLs) and transcriptomes of monocytes from 215 individuals stimulated by fungal, Gram-negative or Gram-positive bacterial pathogens. We identify conserved monocyte responses to bacterial pathogens and a distinct antifungal response. These include 745 response eQTLs (reQTLs) and corresponding genes with pathogen-specific effects, which we find first in samples of male donors and subsequently confirm for selected reQTLs in females. reQTLs affect predominantly upregulated genes that regulate immune response via e.g., NOD-like, C-type lectin, Toll-like and complement receptor-signaling pathways. Hence, reQTLs provide a functional explanation for individual differences in innate response patterns. Our identified reQTLs are also associated with cancer, autoimmunity, inflammatory and infectious diseases as shown by external genome-wide association studies. Thus, reQTLs help to explain interindividual variation in immune response to infection and provide candidate genes for variants associated with a range of diseases.

Authors: A. Hader, S. Schauble, J. Gehlen, N. Thielemann, B. C. Buerfent, V. Schuller, T. Hess, T. Wolf, J. Schroder, M. Weber, K. Hunniger, J. Loffler, S. Vylkova, G. Panagiotou, J. Schumacher, O. Kurzai

Date Published: 5th Jun 2023

Publication Type: Journal

Abstract (Expand)

Candida species are a major cause of invasive fungal infections. While Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are the most dominant species causing life-threatening candidiasis, C. auris recently emerged as a new species causing invasive infections with high rates of clinical treatment failures. To mimic initial phases of systemic Candida infections with dissemination via the bloodstream and to elucidate the pathogenic potential of C. auris, we used an ex vivo whole blood infection model. Similar to other clinically relevant Candida spp., C. auris is efficiently killed in human blood, but showed characteristic patterns of immune cell association, survival rates, and cytokine induction. Dual-species transcriptional profiling of C. auris-infected blood revealed a unique C. auris gene expression program during infection, while the host response proofed similar and conserved compared to other Candida species. C. auris-specific responses included adaptation and survival strategies, such as counteracting oxidative burst of immune cells, but also expression of potential virulence factors, (drug) transporters, and cell surface-associated genes. Despite comparable pathogenicity to other Candida species in our model, C. auris-specific transcriptional adaptations as well as its increased stress resistance and long-term environmental survival, likely contribute to the high risk of contamination and distribution in a nosocomial setting. Moreover, infections of neutrophils with pre-starved C. auris cells suggest that environmental preconditioning can have modulatory effects on the early host interaction. In summary, we present novel insights into C. auris pathogenicity, revealing adaptations to human blood and environmental niches distinctive from other Candida species.

Authors: S. Allert, D. Schulz, P. Kammer, P. Grossmann, T. Wolf, S. Schauble, G. Panagiotou, S. Brunke, B. Hube

Date Published: 10th Feb 2022

Publication Type: Journal

Abstract (Expand)

High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens. For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-kappaB (nuclear factor kappaB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral clearance by counteracting viral nucleic acid-induced activation of type I interferon signaling. Together, the analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance of post-transplant infections.

Authors: B. Seelbinder, J. Wallstabe, L. Marischen, E. Weiss, S. Wurster, L. Page, C. Loffler, L. Bussemer, A. L. Schmitt, T. Wolf, J. Linde, L. Cicin-Sain, J. Becker, U. Kalinke, J. Vogel, G. Panagiotou, H. Einsele, A. J. Westermann, S. Schauble, J. Loeffler

Date Published: 17th Nov 2020

Publication Type: Not specified

Abstract (Expand)

Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.IMPORTANCE To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another.

Authors: P. Kammer, S. McNamara, T. Wolf, T. Conrad, S. Allert, F. Gerwien, K. Hunniger, O. Kurzai, R. Guthke, B. Hube, J. Linde, S. Brunke

Date Published: 6th Oct 2020

Publication Type: Not specified

Abstract (Expand)

Rhinovirus (RV) and influenza virus are the most frequently detected respiratory viruses among adult patients with community acquired pneumonia. Previous clinical studies have identified major differences in the clinical presentations and inflammatory or immune response during these infections. A systematic transcriptomic analysis directly comparing influenza and RV is lacking. Here, we sought to compare the transcriptomic response to these viral infections. Human airway epithelial Calu-3 cells were infected with contemporary clinical isolates of RV, influenza A virus (IAV), or influenza B virus (IBV). Host gene expression was determined using RNA-seq. Differentially expressed genes (DEGs) with respect to mock-infected cells were identified using the overlapping gene-set of four different statistical models. Transcriptomic analysis showed that RV-infected cells have a more blunted host response with fewer DEGs than IAV or IBV-infected cells. IFNL1 and CXCL10 were among the most upregulated DEGs during RV, IAV, and IBV infection. Other DEGs that were highly expressed for all 3 viruses were mainly genes related to type I or type III interferons (RSAD2, IDO1) and chemokines (CXCL11). Notably, ICAM5, a known receptor for enterovirus D68, was highly expressed during RV infection only. Gene Set Enrichment Analysis (GSEA) confirmed that pathways associated with interferon response, innate immunity, or regulation of inflammatory response, were most perturbed for all three viruses. Network analysis showed that steroid-related pathways were enriched. Taken together, our data using contemporary virus strains suggests that genes related to interferon and chemokine predominated the host response associated with RV, IAV, and IBV infection. Several highly expressed genes, especially ICAM5 which is preferentially-induced during RV infection, deserve further investigation.

Authors: T. K. Dissanayake, S. Schauble, M. H. Mirhakkak, W. L. Wu, A. C. Ng, C. C. Y. Yip, A. G. Lopez, T. Wolf, M. L. Yeung, K. H. Chan, K. Y. Yuen, G. Panagiotou, K. K. To

Date Published: 28th Aug 2020

Publication Type: Not specified

Abstract (Expand)

Organisms do not exist isolated from each other, but constantly interact. Cells can sense the presence of interaction partners by a range of receptors and, via complex regulatory networks, specifically react by changing the expression of many of their genes. Technological advances in next-generation sequencing over the recent years now allow us to apply RNA sequencing to two species at the same time (dual RNA-seq), and thus to directly study the gene expression of two interacting species without the need to physically separate cells or RNA. In this review, we give an overview over the latest studies in interspecies interactions made possible by dual RNA-seq, ranging from pathogenic to symbiotic relationships. We summarize state-of-the-art experimental techniques, bioinformatic data analysis and data interpretation, while also highlighting potential problems and pitfalls starting from the selection of meaningful time points and number of reads to matters of rRNA depletion. A short outlook on new trends in the field of dual RNA-seq concludes this review, looking at sequencing of non-coding RNAs during host-pathogen interactions and the prediction of molecular interspecies interactions networks.

Authors: T. Wolf, P. Kammer, S. Brunke, J. Linde

Date Published: 29th Sep 2017

Publication Type: Not specified

Abstract (Expand)

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Delta/efg1Delta mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Delta/efg1Delta strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

Authors: A. Wartenberg, , R. Martin, M. Schreiner, F. Horn, , S. Jenull, , K. Kuchler, , , A. Forche, C. d'Enfert, S. Brunke,

Date Published: 4th Dec 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH