Publications

What is a Publication?
74 Publications visible to you, out of a total of 74

Abstract (Expand)

Inference of inter-species gene regulatory networks based on gene expression data is an important computational method to predict pathogen-host interactions (PHIs). Both the experimental setup and the nature of PHIs exhibit certain characteristics. First, besides an environmental change, the battle between pathogen and host leads to a constantly changing environment and thus complex gene expression patterns. Second, there might be a delay until one of the organisms reacts. Third, toward later time points only one organism may survive leading to missing gene expression data of the other organism. Here, we account for PHI characteristics by extending NetGenerator, a network inference tool that predicts gene regulatory networks from gene expression time series data. We tested multiple modeling scenarios regarding the stimuli functions of the interaction network based on a benchmark example. We show that modeling perturbation of a PHI network by multiple stimuli better represents the underlying biological phenomena. Furthermore, we utilized the benchmark example to test the influence of missing data points on the inference performance. Our results suggest that PHI network inference with missing data is possible, but we recommend to provide complete time series data. Finally, we extended the NetGenerator tool to incorporate gene- and time point specific variances, because complex PHIs may lead to high variance in expression data. Sample variances are directly considered in the objective function of NetGenerator and indirectly by testing the robustness of interactions based on variance dependent disturbance of gene expression values. We evaluated the method of variance incorporation on dual RNA sequencing (RNA-Seq) data of Mus musculus dendritic cells incubated with Candida albicans and proofed our method by predicting previously verified PHIs as robust interactions.

Authors: S. Schulze, S. G. Henkel, D. Driesch, R. Guthke, J. Linde

Date Published: 6th Feb 2015

Publication Type: Not specified

Abstract (Expand)

The successful treatment of infectious diseases requires interdisciplinary studies of all aspects of infection processes. The overarching combination of experimental research and theoretical analysis in a systems biology approach can unravel mechanisms of complex interactions between pathogens and the human immune system. Taking into account spatial information is especially important in the context of infection, since the migratory behavior and spatial interactions of cells are often decisive for the outcome of the immune response. Spatial information is provided by image and video data that are acquired in microscopy experiments and that are at the heart of an image-based systems biology approach. This review demonstrates how image-based systems biology improves our understanding of infection processes. We discuss the three main steps of this approach--imaging, quantitative characterization, and modeling--and consider the application of these steps in the context of studying infection processes. After summarizing the most relevant microscopy and image analysis approaches, we discuss ways to quantify infection processes, and address a number of modeling techniques that exploit image-derived data to simulate host-pathogen interactions in silico.

Authors: A. Medyukhina, , Z. Mokhtari,

Date Published: 29th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Verticillium hemipterigenum (anamorph Torrubiella hemipterigena) is an entomopathogenic fungus and produces a broad range of secondary metabolites. Here, we present the draft genome sequence of the fungus, including gene structure and functional annotation. Genes were predicted incorporating RNA-Seq data and functionally annotated to provide the basis for further genome studies.

Authors: F. Horn, A. Habel, D. H. Scharf, J. Dworschak, , , C. Hertweck,

Date Published: 24th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host-pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.

Authors: , S. Duggan, M. Weber, F. Horn, , D. Hellwig, , , R. Martin, ,

Date Published: 13th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Delta/efg1Delta from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.

Authors: , K. Bieber, R. Martin, T. Lehnert, , J. Loffler, R. F. Guo, N. C. Riedemann,

Date Published: 24th Dec 2014

Publication Type: Not specified

Abstract (Expand)

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Delta/efg1Delta mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Delta/efg1Delta strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

Authors: A. Wartenberg, , R. Martin, M. Schreiner, F. Horn, , S. Jenull, , K. Kuchler, , , A. Forche, C. d'Enfert, S. Brunke,

Date Published: 4th Dec 2014

Publication Type: Not specified

Abstract (Expand)

Aspergillus fumigatus is a saprotrophic filamentous fungus and also the most prevalent airborne fungal pathogen of humans. Depending on the host's immune status, the variety of diseases caused by A. fumigatus ranges from allergies in immunocompetent hosts to life-threatening invasive infections in patients with impaired immunity. In contrast to the majority of other Aspergillus species, which are in most cases nonpathogenic, A. fumigatus features an armory of virulence determinants to establish an infection. For example, A. fumigatus is able to evade the human complement system by binding or degrading complement regulators. Furthermore, the fungus interferes with lung epithelial cells, alveolar macrophages, and neutrophil granulocytes to prevent killing by these immune cells. This chapter summarizes the different strategies of A. fumigatus to manipulate the immune response. We also discuss the potential impact of recent advances in immunoproteomics to improve diagnosis and therapy of an A. fumigatus infection.

Authors: T. Heinekamp, H. Schmidt, K. Lapp, V. Pahtz, , N. Koster-Eiserfunke, T. Kruger, O. Kniemeyer,

Date Published: 18th Nov 2014

Publication Type: Not specified

Abstract (Expand)

Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points.

Authors: S. Brandes, Z. Mokhtari, F. Essig, , ,

Date Published: 8th Nov 2014

Publication Type: Not specified

Abstract (Expand)

Aspergillus fumigatus is a saprophytic mold that can cause life-threatening infections in immunocompromised patients. In the lung, inhaled conidia are confronted with immune effector cells that attack the fungus by various mechanisms such as phagocytosis, production of antimicrobial proteins or generation of reactive oxygen intermediates. Macrophages and neutrophils can also form nitric oxide (NO) and other reactive nitrogen intermediates (RNI) that potentially also contribute to killing of the fungus. However, fungi can produce several enzymes involved in RNI detoxification. Based on genome analysis of A. fumigatus, we identified two genes encoding flavohemoglobins, FhpA, and FhpB, which have been shown to convert NO to nitrate in other fungi, and a gene encoding S-nitrosoglutathione reductase GnoA reducing S-nitrosoglutathione to ammonium and glutathione disulphide. To elucidate the role of these enzymes in detoxification of RNI, single and double deletion mutants of FhpA, FhpB, and GnoA encoding genes were generated. The analysis of mutant strains using the NO donor DETA-NO indicated that FhpA and GnoA play the major role in defense against RNI. By generating fusions with the green fluorescence protein, we showed that both FhpA-eGFP and GnoA-eGFP were located in the cytoplasm of all A. fumigatus morphotypes, from conidia to hyphae, whereas FhpB-eGFP was localized in mitochondria. Because fhpA and gnoA mRNA was also detected in the lungs of infected mice, we investigated the role of these genes in fungal pathogenicity by using a murine infection model for invasive pulmonary aspergillosis. Remarkably, all mutant strains tested displayed wild-type pathogenicity, indicating that the ability to detoxify host-derived RNI is not essential for virulence of A. fumigatus in the applied mouse infection model. Consistently, no significant differences in killing of DeltafhpA, DeltafhpB, or DeltagnoA conidia by cells of the macrophage cell line MH-S were observed when compared to the wild type.

Authors: K. Lapp, M. Vodisch, K. Kroll, M. Strassburger, O. Kniemeyer, T. Heinekamp,

Date Published: 11th Sep 2014

Publication Type: Not specified

Abstract (Expand)

Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.

Authors: I. V. Ene, S. Brunke, A. J. Brown,

Date Published: 4th Sep 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH