Publications

What is a Publication?
53 Publications visible to you, out of a total of 53

Abstract (Expand)

Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.

Authors: R. Altwasser, C. Baldin, J. Weber, , O. Kniemeyer, , , V. Valiante

Date Published: 10th Sep 2015

Publication Type: Not specified

Abstract (Expand)

Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97%) for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83%) for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

Authors: , , M. Weber, , ,

Date Published: 11th Mar 2015

Publication Type: Not specified

Abstract (Expand)

Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.

Authors: , , S. G. Henkel,

Date Published: 2nd Mar 2015

Publication Type: Not specified

Abstract (Expand)

Inference of inter-species gene regulatory networks based on gene expression data is an important computational method to predict pathogen-host interactions (PHIs). Both the experimental setup and the nature of PHIs exhibit certain characteristics. First, besides an environmental change, the battle between pathogen and host leads to a constantly changing environment and thus complex gene expression patterns. Second, there might be a delay until one of the organisms reacts. Third, toward later time points only one organism may survive leading to missing gene expression data of the other organism. Here, we account for PHI characteristics by extending NetGenerator, a network inference tool that predicts gene regulatory networks from gene expression time series data. We tested multiple modeling scenarios regarding the stimuli functions of the interaction network based on a benchmark example. We show that modeling perturbation of a PHI network by multiple stimuli better represents the underlying biological phenomena. Furthermore, we utilized the benchmark example to test the influence of missing data points on the inference performance. Our results suggest that PHI network inference with missing data is possible, but we recommend to provide complete time series data. Finally, we extended the NetGenerator tool to incorporate gene- and time point specific variances, because complex PHIs may lead to high variance in expression data. Sample variances are directly considered in the objective function of NetGenerator and indirectly by testing the robustness of interactions based on variance dependent disturbance of gene expression values. We evaluated the method of variance incorporation on dual RNA sequencing (RNA-Seq) data of Mus musculus dendritic cells incubated with Candida albicans and proofed our method by predicting previously verified PHIs as robust interactions.

Authors: S. Schulze, S. G. Henkel, D. Driesch, R. Guthke, J. Linde

Date Published: 6th Feb 2015

Publication Type: Not specified

Abstract (Expand)

Verticillium hemipterigenum (anamorph Torrubiella hemipterigena) is an entomopathogenic fungus and produces a broad range of secondary metabolites. Here, we present the draft genome sequence of the fungus, including gene structure and functional annotation. Genes were predicted incorporating RNA-Seq data and functionally annotated to provide the basis for further genome studies.

Authors: F. Horn, A. Habel, D. H. Scharf, J. Dworschak, , , C. Hertweck,

Date Published: 24th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host-pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.

Authors: , S. Duggan, M. Weber, F. Horn, , D. Hellwig, , , R. Martin, ,

Date Published: 13th Jan 2015

Publication Type: Not specified

Abstract (Expand)

Following antifungal treatment, Candida albicans, and other human pathogenic fungi can undergo microevolution, which leads to the emergence of drug resistance. However, the capacity for microevolutionary adaptation of fungi goes beyond the development of resistance against antifungals. Here we used an experimental microevolution approach to show that one of the central pathogenicity mechanisms of C. albicans, the yeast-to-hyphae transition, can be subject to experimental evolution. The C. albicans cph1Delta/efg1Delta mutant is nonfilamentous, as central signaling pathways linking environmental cues to hyphal formation are disrupted. We subjected this mutant to constant selection pressure in the hostile environment of the macrophage phagosome. In a comparatively short time-frame, the mutant evolved the ability to escape macrophages by filamentation. In addition, the evolved mutant exhibited hyper-virulence in a murine infection model and an altered cell wall composition compared to the cph1Delta/efg1Delta strain. Moreover, the transcriptional regulation of hyphae-associated, and other pathogenicity-related genes became re-responsive to environmental cues in the evolved strain. We went on to identify the causative missense mutation via whole genome- and transcriptome-sequencing: a single nucleotide exchange took place within SSN3 that encodes a component of the Cdk8 module of the Mediator complex, which links transcription factors with the general transcription machinery. This mutation was responsible for the reconnection of the hyphal growth program with environmental signals in the evolved strain and was sufficient to bypass Efg1/Cph1-dependent filamentation. These data demonstrate that even central transcriptional networks can be remodeled very quickly under appropriate selection pressure.

Authors: A. Wartenberg, , R. Martin, M. Schreiner, F. Horn, , S. Jenull, , K. Kuchler, , , A. Forche, C. d'Enfert, S. Brunke,

Date Published: 4th Dec 2014

Publication Type: Not specified

Abstract (Expand)

Streptomyces iranensis HM 35 has been shown to exhibit 72.7% DNA-DNA similarity to the important drug rapamycin (sirolimus)-producing Streptomyces rapamycinicus NRRL5491. Here, we report the genome sequence of HM 35, which represents a partially overlapping repertoire of secondary metabolite gene clusters with S. rapamycinicus, including the gene cluster for rapamycin biosynthesis.

Authors: F. Horn, V. Schroeckh, T. Netzker, , ,

Date Published: 19th Jul 2014

Publication Type: Not specified

Abstract (Expand)

The human pathogenic fungus Aspergillus fumigatus normally lives as a soil saprophyte. Its environment includes poorly oxygenated substrates that also occur during tissue invasive growth of the fungus in the human host. Up to now, few cellular factors have been identified that allow the fungus to efficiently adapt its energy metabolism to hypoxia. Here, we cultivated A. fumigatus in an O2 -controlled fermenter and analysed its responses to O2 limitation on a minute timescale. Transcriptome sequencing revealed several genes displaying a rapid and highly dynamic regulation. One of these genes was analysed in detail and found to encode fungoglobin, a previously uncharacterized member of the sensor globin protein family widely conserved in filamentous fungi. Besides low O2 , iron limitation also induced transcription, but regulation was not entirely dependent on the two major transcription factors involved in adaptation to iron starvation and hypoxia, HapX and SrbA respectively. The protein was identified as a functional haemoglobin, as binding of this cofactor was detected for the recombinant protein. Gene deletion in A. fumigatus confirmed that haem-binding fungoglobins are important for growth in microaerobic environments with O2 levels far lower than in hypoxic human tissue.

Authors: F. Hillmann, , N. Beckmann, M. Cyrulies, M. Strassburger, T. Heinekamp, H. Haas, , ,

Date Published: 7th Jul 2014

Publication Type: Not specified

Abstract (Expand)

Nitrogen is one of the key nutrients for microbial growth. During infection, pathogenic fungi like C. albicans need to acquire nitrogen from a broad range of different and changing sources inside the host. Detecting the available nitrogen sources and adjusting the expression of genes for their uptake and degradation is therefore crucial for survival and growth as well as for establishing an infection. Here, we analyzed the transcriptional response of C. albicans to nitrogen starvation and feeding with the infection-relevant nitrogen sources arginine and bovine serum albumin (BSA), representing amino acids and proteins, respectively. The response to nitrogen starvation was marked by an immediate repression of protein synthesis and an up-regulation of general amino acid permeases, as well as an up-regulation of autophagal processes in its later stages. Feeding with arginine led to a fast reduction in expression of general permeases for amino acids and to resumption of protein synthesis. The response to BSA feeding was generally slower, and was additionally characterized by an up-regulation of oligopeptide transporter genes. From time-series data, we inferred network interaction models for genes relevant in nitrogen detection and uptake. Each individual network was found to be largely specific for the experimental condition (starvation or feeding with arginine or BSA). In addition, we detected several novel connections between regulator and effector genes, with putative roles in nitrogen uptake. We conclude that C. albicans adopts a particular nitrogen response network, defined by sets of specific gene-gene connections for each environmental condition. All together, they form a grid of possible gene regulatory networks, increasing the transcriptional flexibility of C. albicans.

Authors: S. Ramachandra, , , , , S. Brunke

Date Published: 20th Mar 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH