Publications

What is a Publication?
3 Publications visible to you, out of a total of 3

Abstract (Expand)

Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4(+) or CD8(+) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b(+) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b(+) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.

Authors: , J. Amich, B. Arslan, S. Poreddy, K. Mattenheimer, Z. Mokhtari, , , ,

Date Published: 13th Jul 2016

Publication Type: Not specified

Abstract (Expand)

OBJECTIVES: Candida albicans is an important fungal pathogen that can cause life-threatening disseminated infections. To determine the efficacy of therapy in murine models, a determination of renal fungal burden as cfu is commonly used. However, this approach provides only a snapshot of the current situation in an individual animal and cryptic sites of infection may easily be missed. Thus, we aimed to develop real-time non-invasive imaging to monitor infection in vivo. METHODS: Bioluminescent C. albicans reporter strains were developed based on a bioinformatical approach for codon optimization. The reporter strains were analysed in vitro and in vivo in the murine model of systemic candidiasis. RESULTS: Reporter strains allowed the in vivo monitoring of infection and a determination of fungal burden, with a high correlation between bioluminescence and cfu count. We confirmed the kidney as the main target organ but additionally observed the translocation of C. albicans to the urinary bladder. The treatment of infected mice with caspofungin and fluconazole significantly improved the clinical outcome and clearance of C. albicans from the kidneys; however, unexpectedly, viable fungal cells persisted in the gall bladder. Fungi were secreted with bile and detected in the faeces, implicating the gall bladder as a reservoir for colonization by C. albicans after antifungal therapy. Bile extracts significantly decreased the susceptibility of C. albicans to various antifungals in vitro, thereby probably contributing to its persistence. CONCLUSIONS: Using in vivo imaging, we identified cryptic sites of infection and persistence of C. albicans in the gall bladder during otherwise effective antifungal treatment. Bile appears to directly interfere with antifungal activity.

Authors: , A. Luttich, , ,

Date Published: 20th Jun 2014

Publication Type: Not specified

Abstract (Expand)

Nitrogen is one of the key nutrients for microbial growth. During infection, pathogenic fungi like C. albicans need to acquire nitrogen from a broad range of different and changing sources inside the host. Detecting the available nitrogen sources and adjusting the expression of genes for their uptake and degradation is therefore crucial for survival and growth as well as for establishing an infection. Here, we analyzed the transcriptional response of C. albicans to nitrogen starvation and feeding with the infection-relevant nitrogen sources arginine and bovine serum albumin (BSA), representing amino acids and proteins, respectively. The response to nitrogen starvation was marked by an immediate repression of protein synthesis and an up-regulation of general amino acid permeases, as well as an up-regulation of autophagal processes in its later stages. Feeding with arginine led to a fast reduction in expression of general permeases for amino acids and to resumption of protein synthesis. The response to BSA feeding was generally slower, and was additionally characterized by an up-regulation of oligopeptide transporter genes. From time-series data, we inferred network interaction models for genes relevant in nitrogen detection and uptake. Each individual network was found to be largely specific for the experimental condition (starvation or feeding with arginine or BSA). In addition, we detected several novel connections between regulator and effector genes, with putative roles in nitrogen uptake. We conclude that C. albicans adopts a particular nitrogen response network, defined by sets of specific gene-gene connections for each environmental condition. All together, they form a grid of possible gene regulatory networks, increasing the transcriptional flexibility of C. albicans.

Authors: S. Ramachandra, , , , , S. Brunke

Date Published: 20th Mar 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH