Publications

What is a Publication?
13 Publications visible to you, out of a total of 13

Abstract (Expand)

Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host-pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host-fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen-host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi-human and fungi-mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host-fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host-fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host-fungi transcriptome and proteome data.

Authors: C. W. Remmele, C. H. Luther, J. Balkenhol, T. Dandekar, T. Muller, M. T. Dittrich

Date Published: 25th Aug 2015

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Adjusting the capacity of metabolic pathways in response to rapidly changing environmental conditions is an important component of microbial adaptation strategies to stochastic environments. In this work, we use advanced dynamic optimization techniques combined with theoretical models to study which reactions in pathways are optimally targeted by regulatory interactions in order to minimize the regulatory effort that is required to adjust the flux through a complex metabolic network. Moreover, we analyze how constraints in the speed at which an organism can respond on a proteomic level influences these optimal targets of pathway control. RESULTS: We find that limitations in protein biosynthetic rates have a strong influence. With increasing protein biosynthetic rates the regulatory effort targeting the initial enzyme in a pathway is reduced while the regulatory effort in the terminal enzyme is increased. Studying the impact of allosteric regulation for different pathway topologies, we find that the presence of feedback inhibition by products of metabolic pathways allows organisms to reduce the regulatory effort that is required to control a metabolic pathway in all cases. In a linear pathway this even leads to the case where the sole transcriptional regulatory control of the terminal enzyme is sufficient to control flux through the entire pathway. We confirm the utilization of these pathway regulation strategies through the large-scale analysis of transcriptional regulation in several hundred prokaryotes. CONCLUSIONS: This work expands our knowledge about optimal programs of pathway control. Optimal targets of pathway control strongly depend on the speed at which proteins can be synthesized. Moreover, post-translational regulation such as allosteric regulation allows to strongly reduce the number of transcriptional regulatory interactions required to control a metabolic pathway across different pathway topologies.

Authors: G. M. de Hijas-Liste, E. Balsa-Canto, , M. Bartl, P. Li, J. R. Banga,

Date Published: 16th May 2015

Publication Type: Not specified

Abstract (Expand)

In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.

Authors: , M. Kotzing, M. Bartl,

Date Published: 1st May 2015

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH