Publications

What is a Publication?
34 Publications visible to you, out of a total of 34

Abstract (Expand)

Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Delta/efg1Delta from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.

Authors: , K. Bieber, R. Martin, T. Lehnert, , J. Loffler, R. F. Guo, N. C. Riedemann,

Date Published: 24th Dec 2014

Publication Type: Not specified

Abstract (Expand)

Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points.

Authors: S. Brandes, Z. Mokhtari, F. Essig, , ,

Date Published: 8th Nov 2014

Publication Type: Not specified

Abstract (Expand)

Lichtheimia corymbifera is a ubiquitous soilborne zygomycete fungus, which is an opportunistic human pathogen in immunocompromised patients. The fungus can cause life-threatening diseases by attacking the lung during early stages of invasion and by disseminating during later phases causing systemic infection. Since infections have drastically increased during the last decades, it is a major goal to investigate the mechanisms underlying pathogenicity of L. corymbifera. One of the first barriers, which the fungus needs to cope with in the lung tissue, is phagocytosis by alveolar macrophages. Here, we report on phagocytosis assays for murine alveolar macrophages co-incubated with resting, swollen and opsonised spores of a virulent and an attenuated L. corymbifera strain. A major finding of this study is the significantly increased phagocytosis ratio of the virulent strain if compared to the attenuated strain. We quantify the phagocytosis by performing automated analysis of fluorescence microscopy images and by computing ratios for (i) fungal phagocytosis, (ii) fungal adhesion to phagocytes and (iii) fungal aggregation and spore cluster distribution in space. Automation of the image analysis yields objective results that overcome the disadvantages of manual analyses being time consuming, error-prone and subjective. Therefore, it can be expected that automated image analysis of confrontation assays will play a crucial role in future investigations of host-pathogen interactions.

Authors: , H. R. Park, H. M. Dahse, C. Skerka, K. Voigt,

Date Published: 1st Sep 2014

Publication Type: Not specified

Abstract (Expand)

Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment-model-experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.

Authors: , T. Lehnert, K. Bieber, R. Martin, ,

Date Published: 20th Feb 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH