Publications

What is a Publication?
3 Publications visible to you, out of a total of 3

Abstract (Expand)

Fungal infections caused by the ancient lineage Mucorales are emerging and increasingly reported in humans. Comprehensive surveys on promising attributes from a multitude of possible virulence factors are limited and so far, focused on Mucor and Rhizopus. This study addresses a systematic approach to monitor phagocytosis after physical and enzymatic modification of the outer spore wall of Lichtheimia corymbifera, one of the major causative agents of mucormycosis. Episporic modifications were performed and their consequences on phagocytosis, intracellular survival and virulence by murine alveolar macrophages and in an invertebrate infection model were elucidated. While depletion of lipids did not affect the phagocytosis of both strains, delipidation led to attenuation of LCA strain but appears to be dispensable for infection with LCV strain in the settings used in this study. Combined glucano-proteolytic treatment was necessary to achieve a significant decrease of virulence of the LCV strain in Galleria mellonella during maintenance of the full potential for spore germination as shown by a novel automated germination assay. Proteolytic and glucanolytic treatments largely increased phagocytosis compared to alive resting and swollen spores. Whilst resting spores barely (1-2%) fuse to lysosomes after invagination in to phagosomes, spore trypsinization led to a 10-fold increase of phagolysosomal fusion as measured by intracellular acidification. This is the first report of a polyphasic measurement of the consequences of episporic modification of a mucormycotic pathogen in spore germination, spore surface ultrastructure, phagocytosis, stimulation of Toll-like receptors (TLRs), phagolysosomal fusion and intracellular acidification, apoptosis, generation of reactive oxygen species (ROS) and virulence.

Authors: M. I. A. Hassan, M. Keller, M. Hillger, U. Binder, S. Reuter, K. Herold, A. Telagathoti, H. M. Dahse, S. Wicht, N. Trinks, S. Nietzsche, T. Deckert-Gaudig, V. Deckert, R. Mrowka, U. Terpitz, H. Peter Saluz, K. Voigt

Date Published: 18th Feb 2021

Publication Type: Not specified

Abstract (Expand)

Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1alpha, MIP-1beta, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56(bright)CD16(dim) cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1alpha, MIP-1beta, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility.

Authors: E. Weiss, J. Schlegel, U. Terpitz, M. Weber, J. Linde, A. L. Schmitt, K. Hunniger, L. Marischen, F. Gamon, J. Bauer, C. Loffler, O. Kurzai, C. O. Morton, M. Sauer, H. Einsele, J. Loeffler

Date Published: 5th Oct 2020

Publication Type: Not specified

Abstract (Expand)

Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.

Authors: R. Gotz, S. Panzer, N. Trinks, J. Eilts, J. Wagener, D. Turra, A. Di Pietro, M. Sauer, U. Terpitz

Date Published: 23rd Apr 2020

Publication Type: Not specified

Powered by
(v.1.13.4)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH