SOP

FFPE-TRYPSIN-WORKFLOW FOR MALDI IMAGING

1. CHEMICALS AND MATERIAL
 - Formalin-fixed and paraffin embedded tissue (FFPE-tissue)
 - Ethanol (MS-grade)
 - Methanol MeOH (MS-grade)
 - Xylol (MS-grade)
 - Acetonitrile ACN (MS-grade)
 - 100 mM Ammonium bicarbonate AMBIC (Sigma Aldrich)
 - MilliQ Water
 - Acetic acid (99.5%)
 - Trifluorocacetic acid (TFA)
 - Matrix (CHCA or DHB)
 - Trypsin Gold (Promega)
 - Peptid Standard (Bruker)
 - Crushed Ice

2. EQUIPMENT
 - ITO-Slide (Bruker) coated additional with Poly-L-lysine and IGEPAL
 - Eppendorf Safe-lock microcentrifuge tubes (1.5 ml or 0.5 ml)
 - Vortex mixer
 - Pipettes and pipette tips
 - Glass cuvette
 - Microtom (Leica)
 - Equipment for sectioning (brushs, tweezers, microtome blade)
 - White paint marker (Edding 780, 0.8 mm)
 - Permament, solve resistant Marker (Secureline)
 - Heating cabinet
 - Water bath
 - SunPrep (SunChrom)
 - SunCollect (SunChrom)
 - SunDigest (SunChrom)
 - Slide Scanner (Hamamatsu, NanozoomerSQ)
 - UltrafleXtreme (Bruker)
 - Slide Adapter II (Bruker)

3. PRELIMINARY

 Acetic acid 50 mM
 add 115 µl Acetic acid (99.5%) to 40 ml Milli-Q

 AMBIC (Ammonium bicarbonate NH₄HCO₃)
 100 mM Stock solution (394 mg in 50 ml Milli-Q)
 50 mM => for trypsin working solution
 10 mM => for ph-conditioning
Citric Acid Monohydrate ($C_6H_8O_7$·H_2O) 10 mM pH 6
1.05 g in 500 ml Milli-Q => for Antigen-Retrieval

Trypsin-Aliquot
100 µg lyophilized trypsin powder
add 200 µl Acetic acid (50 mM) = 0,5 µg/µl
=> 5 Aliquots à 40 µl (store at -80°C)
Trypsin working solution (100 ng/µl) – store on crushed ice until use
40 µl Trypsin (0,5 µg/µl)
+ 160 µl 50 mM AMBIC
+ 10 µl ACN

Peptide standard aliquot
peptide standard II stored at -20°C until dissolving
0.1% TFA: add 1 µl TFA to 999 µl MilliQ water
Dissolve the peptide standard in 125 µl 0.1% TFA solvent
vortex for several seconds
aliquot the dissolved peptide standard in 5 µl
store at -20°C until use

Matrixsolutions (fresh or storage for maximum 1 week at room temperature in dark)
CHCA (10 mg/ml in 60% ACN + 0.2% TFA)
 10 mg CHCA + 600 µl ACN + 400 µl H₂O + 2 µl TFA
DHB (30 mg/ml in 50% MeOH + 0.2% TFA)
 30 mg DHB + 500 µl MeOH + 500 µl H₂O + 2 µl TFA

4. Operating Procedure
- Sectioning FFPE tissue (Leica microtome) 5 µm
 let dry the slides at room temperature
 for later use: store at room temperature

- pre melt the section
 1 hours at 60°C in the heating chamber or overnight at 37°C

- deparaffinization and rehydration (with SunPrep)
 (each step 220s, 4 dips all 5 seconds)
Xylol I → Xylol II → Xylol III → drying (compressed air)
→ Ethanol 100% → Ethanol 95% → Ethanol 70% → drying (compressed air)
→ 10mM AMBIC → H₂O → H₂O → drying (compressed air)

- antigen retrieval
 Slide in glass cuvette filled with Citric acid (10 mM, pH6) or Tris-HCl (10 mM, pH9)
 place in the cold water bath
 heat the water bath to 95°C, cook the slide 30 minutes at 95°C (both steps take approximately 1h)
• **pH-conditioning (with SunPrep)**
 (each step 220s, 4 dips all 5 seconds)

 10mM AMBIC → 10mM AMBIC → H₂O → drying (compressed air)

• Teach marks (white marker)

• **Overview Scan (NanoZoomer SQ)**
 change storage location and file name, manual adjustment of the scanning area (tissue and tech marks),
 check focus points manual, magnification 20x

• **Trypsin deposition SunCollect**
 pre-cool SunCollect syringe (250 µl) filled with AMBIC (50 mM) on crushed ice

 Trypsin working solution **(ON ICE):**
 40 µl Trypsin Aliquot
 + 160 µl AMBIC (50 mM)
 + 10 µl ACN

 Trypsin spray protocol (e.g. Trypsin area_3.cfg)
 8 layers á 10 µl/min
 Speed x = low, 7
 Speed y = medium, 1
 Line distance in y = 2 mm
 Z position = 29 mm, z offset = 0

• **Tryptic adigestion with SunDigest**
 SMART or BASIC mode

 SMART mode (C:\ProgramFiles\SunDigest1.18\Smartmode_methods\smartmode_fan10.txt)
 No. of Steps per Cycle: 2; Cycle restriction: YES (1); cooldown: YES (10 min)

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
<th>Fan Speed</th>
<th>Base Temp</th>
<th>Cover Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>900 s</td>
<td>0 %</td>
<td>50°C</td>
<td>45°C</td>
</tr>
<tr>
<td>Step 2</td>
<td>6300 s</td>
<td>10%</td>
<td>50°C</td>
<td>45°C</td>
</tr>
</tbody>
</table>

 BASIC mode
 Humidity: 95%, Temperature: 50°C, Time: 2:00:00, Cooldown ❌
 No. of Steps per Cycle: 2; Cycle restriction: YES (1); cooldown: YES (10 min)

• **Matrix deposition with SunCollect**
 CHCA or DHB
 fill the matrix solution in the SunCollect syringe (2.5 ml), spray the matrix with the spraying device
 (SunCollect) according the following protocols or create a new one
CHCA spray protocol (e.g. HCCA area_4.cfg)
3 layers => layer 1: 10 µl/min; layer 2/3: 35 µl/min
Speed x = low, 3
Speed y = medium, 1
Line distance in y = 2 mm
Z position = 29 mm, z offset = 0

DHB spray protocol (30 mg/ml) (e.g. DHB area_4.cfg)
5 layers => layer 1: 10 µl/min; layer 2: 35 µl/min
Speed x = low, 3
Speed y = medium, 1
Line distance in y = 2 mm
Z position = 29 mm, z offset = 0

- Calibration with peptide standard
 5 µl Peptide standard Aliquot (stored at -20°C)
 + 5 µl Matrix solution
 spot 2x 1 µl on the ITO Slide next to the matrix-tissue-areal

- Transfer the Slide adapter with the prepared slide to the UltraflexXtreme
 calibrate the flexControl method
 select the AutoXecute method (check the flexControl method)
 open flexImaging, teach the slide (white marks) – check teaching on several points at the tissue
 define measurement region (tissue region), define additionally small matrix
 start the measurement

- After measurement:
 histological staining (hematoxylin/eosin, PAS or other)
 interpretation with SCiLS software

5. **ADDITIONAL**

Coordinates for spray protocol (individual adjustment is possible)

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>Y1</th>
<th>X2</th>
<th>Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1</td>
<td>8,37</td>
<td>2,55</td>
<td>64,25</td>
<td>32,55</td>
</tr>
<tr>
<td>Area 2</td>
<td>20,37</td>
<td>2,55</td>
<td>52,25</td>
<td>32,55</td>
</tr>
<tr>
<td>Area 3</td>
<td>20,37</td>
<td>12,55</td>
<td>52,25</td>
<td>32,55</td>
</tr>
<tr>
<td>Area 4</td>
<td>8,37</td>
<td>12,55</td>
<td>64,25</td>
<td>32,55</td>
</tr>
</tbody>
</table>
Schematic Overview FFPE-Trypsin-Workflow

FFPE-Trypsin-Workflow

Paraffin section 5 µm

<table>
<thead>
<tr>
<th>Step</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-melt</td>
<td>60°C, 1h (or overnight 37°C)</td>
</tr>
<tr>
<td>Deparaffinization</td>
<td>220 seconds
↓ Xylo 1
↓ Xylo 2
↓ Xylo 3
↓ dry</td>
</tr>
<tr>
<td>Rehydration</td>
<td>↓ Ethanol 100
↓ Ethanol 95%
↓ Ethanol 70%
↓ dry</td>
</tr>
<tr>
<td>pH-conditioning 1</td>
<td>↓ AMBIC 10mM
↓ H₂O
↓ H₂O
↓ dry</td>
</tr>
<tr>
<td>Antigen-Retrieval</td>
<td>30 min. 95°C water bath
cold start – at reach 95°C – 30 min. cook
cuvette filled with: Citric acid 10mM pH6</td>
</tr>
<tr>
<td>pH- conditioning 2</td>
<td>220 seconds
↓ AMBIC 10mM
↓ AMBIC 10mM
↓ H₂O
↓ dry</td>
</tr>
<tr>
<td>Teach Marks, Scan</td>
<td>SunCollect syringe filled with AMBIC 50mM precool on Ice</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Trypsin deposit with SunCollect
Trypsin working solution: 40 µl Trypsin Aliquot
on Ice
+ 160 µl AMBIC 50 mM
+ 10 µl ACN</td>
</tr>
<tr>
<td>Digestion</td>
<td>tryptic digestion with SunDigest
SMART or BASIC mode</td>
</tr>
<tr>
<td>Matrix</td>
<td>Matrix deposit with SunCollect</td>
</tr>
<tr>
<td>Peptide standard for calibration on matrix-free areal</td>
<td></td>
</tr>
<tr>
<td>MSI measurement</td>
<td>calibration, matrix-spectra, tissue region</td>
</tr>
<tr>
<td>Histologische Färbung</td>
<td>hematoxylin/eosin, PAS or other</td>
</tr>
</tbody>
</table>