Publications

Abstract (Expand)

The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1Delta mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1Delta null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1Delta mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37 degrees C instead of 30 degrees C, and this phenotype enabled us to isolate homozygous snf1Delta mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1Delta mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1Delta mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans.

Authors: Austin Mottola, S. Schwanfelder, Joachim Morschhäuser

Date Published: 19th Aug 2020

Journal: mSphere

Abstract (Expand)

Apart from some model organisms, the interactome of most organisms is largely unidentified. High-throughput experimental techniques to determine protein-protein interactions (PPIs) are resource intensive and highly susceptible to noise. Computational methods of PPI determination can accelerate biological discovery by identifying the most promising interacting pairs of proteins and by assessing the reliability of identified PPIs. Here we present a first in-depth study describing a global view of the ant Camponotus floridanus interactome. Although several ant genomes have been sequenced in the last eight years, studies exploring and investigating PPIs in ants are lacking. Our study attempts to fill this gap and the presented interactome will also serve as a template for determining PPIs in other ants in future. Our C. floridanus interactome covers 51,866 non-redundant PPIs among 6,274 proteins, including 20,544 interactions supported by domain-domain interactions (DDIs), 13,640 interactions supported by DDIs and subcellular localization, and 10,834 high confidence interactions mediated by 3,289 proteins. These interactions involve and cover 30.6% of the entire C. floridanus proteome.

Authors: Shishir K Gupta, Mugdha Srivastava, O. Osmanoglu, Thomas Dandekar

Date Published: 11th Feb 2020

Journal: Sci Rep

Abstract (Expand)

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery is a last-resort treatment to induce substantial and sustained weight loss in cases of severe obesity. This anatomical rearrangement affects the intestinal microbiota, but so far, little information is available on how it interferes with microbial functionality and microbial-host interactions independently of weight loss. METHODS: A rat model was employed where the RYGB-surgery cohort is compared to sham-operated controls which were kept at a matched body weight by food restriction. We investigated the microbial taxonomy and functional activity using 16S rRNA amplicon gene sequencing, metaproteomics, and metabolomics on samples collected from theileum, the cecum, and the colon, and separately analysed the lumen and mucus-associated microbiota. RESULTS: Altered gut architecture in RYGB increased the relative occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria, while in general, Firmicutes were decreased although Streptococcaceae and Clostridium perfringens were observed at relative higher abundances independent of weight loss. A decrease of conjugated and secondary bile acids was observed in the RYGB-gut lumen. The arginine biosynthesis pathway in the microbiota was altered, as indicated by the changes in the abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. CONCLUSION: The anatomical rearrangement in RYGB affects microbiota composition and functionality as well as changes in amino acid and bile acid metabolism independently of weight loss. The shift in the taxonomic structure of the microbiota after RYGB may be mediated by the resulting change in the composition of the bile acid pool in the gut and by changes in the composition of nutrients in the gut. Video abstract.

Authors: S. B. Haange, N. Jehmlich, U. Krugel, C. Hintschich, D. Wehrmann, M. Hankir, F. Seyfried, J. Froment, T. Hubschmann, S. Muller, D. K. Wissenbach, K. Kang, C. Buettner, Gianni Panagiotou, M. Noll, U. Rolle-Kampczyk, W. Fenske, M. von Bergen

Date Published: 7th Feb 2020

Journal: Microbiome

Abstract (Expand)

Exercise is an effective strategy for diabetes management but is limited by the phenomenon of exercise resistance (i.e., the lack of or the adverse response to exercise on metabolic health). Here, in 39 medication-naive men with prediabetes, we found that exercise-induced alterations in the gut microbiota correlated closely with improvements in glucose homeostasis and insulin sensitivity (clinicaltrials.gov entry NCT03240978). The microbiome of responders exhibited an enhanced capacity for biosynthesis of short-chain fatty acids and catabolism of branched-chain amino acids, whereas those of non-responders were characterized by increased production of metabolically detrimental compounds. Fecal microbial transplantation from responders, but not non-responders, mimicked the effects of exercise on alleviation of insulin resistance in obese mice. Furthermore, a machine-learning algorithm integrating baseline microbial signatures accurately predicted personalized glycemic response to exercise in an additional 30 subjects. These findings raise the possibility of maximizing the benefits of exercise by targeting the gut microbiota.

Authors: Y. Liu, Y. Wang, Y. Ni, C. K. Y. Cheung, K. S. L. Lam, Y. Wang, Z. Xia, D. Ye, J. Guo, M. A. Tse, Gianni Panagiotou, A. Xu

Date Published: 7th Jan 2020

Journal: Cell Metab

Abstract (Expand)

The epidithiodioxopiperazine gliotoxin is a virulence factor of Aspergillus fumigatus, the most important airborne fungal pathogen of humans. Gliotoxin suppresses innate immunity in invasive aspergillosis, particularly by compromising neutrophils, but the underlying molecular mechanisms remain elusive. Neutrophils are the first responders among innate immune cells recruited to sites of infection by the chemoattractant leukotriene (LT)B4 that is biosynthesized by 5-lipoxygenase and LTA4 hydrolase (LTA4H). Here, we identified gliotoxin as inhibitor of LTA4H that selectively abrogates LTB4 formation in human leukocytes and in distinct animal models. Gliotoxin failed to inhibit the formation of other eicosanoids and the aminopeptidase activity of the bifunctional LTA4H. Suppression of LTB4 formation by gliotoxin required the cellular environment and/or reducing conditions, and only the reduced form of gliotoxin inhibited LTA4H activity. Conclusively, gliotoxin suppresses the biosynthesis of the potent neutrophil chemoattractant LTB4 by direct interference with LTA4H thereby impairing neutrophil functions in invasive aspergillosis.

Authors: S. Konig, S. Pace, H. Pein, Thorsten Heinekamp, J. Kramer, E. Romp, M. Strassburger, F. Troisi, A. Proschak, J. Dworschak, K. Scherlach, A. Rossi, L. Sautebin, J. Z. Haeggstrom, C. Hertweck, Axel Brakhage, J. Gerstmeier, E. Proschak, O. Werz

Date Published: 18th Apr 2019

Journal: Cell Chem Biol

Abstract (Expand)

Invasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy toward this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of hematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3% sensitivity and 74.6% specificity. Moreover, we validated the expression of S100B in a real-time reverse transcription polymerase chain reaction (RT-PCR) assay and we also found a down-regulation of S100B in A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis.

Authors: Andreas Dix, K. Czakai, J. Springer, M. Fliesser, M. Bonin, Reinhard Guthke, A. L. Schmitt, Hermann Einsele, Jörg Linde, Jürgen Löffler

Date Published: 21st Mar 2016

Journal: Front Microbiol

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH