Abstract (Expand)

Candida albicans is an important human opportunistic fungal pathogen which is frequently found as part of the normal human microbiota. It is well accepted that the fungus interacts with other components of the resident microbiota and that this impacts the commensal or pathogenic outcome of C. albicans colonization. Different types of interactions, including synergism or antagonism, contribute to a complex balance between the multitude of different species. Mixed biofilms of C. albicans and streptococci are a well-studied example of a mutualistic interaction often potentiating the virulence of the individual members. In contrast, other bacteria like lactobacilli are known to antagonize C. albicans, and research has just started elucidating the mechanisms behind these interactions. This scenario is even more complicated by a third player, the host. This review focuses on interactions between C. albicans and gram-positive bacteria whose investigation will without doubt ultimately help understanding C. albicans infections.

Authors: None

Date Published: No date defined

Journal: Cellular Microbiology

Abstract (Expand)

Antibiotic resistance is an increasing threat to human health. In the case of Aspergillus fumigatus, which is both an environmental saprobe and an opportunistic human fungal pathogen, resistance is suggested to arise from fungicide use in agriculture, as the azoles used for plant protection share the same molecular target as the frontline antifungals used clinically. However, limiting azole fungicide use on crop fields to preserve their activity for clinical use could threaten the global food supply via a reduction in yield. In this study, we clarify the link between azole fungicide use on crop fields and resistance in a prototypical human pathogen through systematic soil sampling on farms in Germany and surveying fields before and after fungicide application. We observed a reduction in the abundance of A. fumigatus on fields following fungicide treatment in 2017, a finding that was not observed on an organic control field with only natural plant protection agents applied. However, this finding was less pronounced during our 2018 sampling, indicating that the impact of fungicides on A. fumigatus population size is variable and influenced by additional factors. The overall resistance frequency among agricultural isolates is low, with only 1 to 3% of isolates from 2016 to 2018 displaying resistance to medical azoles. Isolates collected after the growing season and azole exposure show a subtle but consistent decrease in susceptibility to medical and agricultural azoles. Whole-genome sequencing indicates that, despite the alterations in antifungal susceptibility, fungicide application does not significantly affect the population structure and genetic diversity of A. fumigatus in fields. Given the low observed resistance rate among agricultural isolates as well the lack of genomic impact following azole application, we do not find evidence that azole use on crops is significantly driving resistance in A. fumigatus in this context.IMPORTANCE Antibiotic resistance is an increasing threat to human health. In the case of Aspergillus fumigatus, which is an environmental fungus that also causes life-threatening infections in humans, antimicrobial resistance is suggested to arise from fungicide use in agriculture, as the chemicals used for plant protection are almost identical to the antifungals used clinically. However, removing azole fungicides from crop fields threatens the global food supply via a reduction in yield. In this study, we survey crop fields before and after fungicide application. We find a low overall azole resistance rate among agricultural isolates, as well as a lack of genomic and population impact following fungicide application, leading us to conclude azole use on crops does not significantly contribute to resistance in A. fumigatus.

Authors: A. E. Barber, J. Riedel, T. Sae-Ong, K. Kang, W. Brabetz, Gianni Panagiotou, H. B. Deising, Oliver Kurzai

Date Published: 24th Nov 2020

Journal: mBio

Abstract (Expand)

Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.

Authors: R. Gotz, S. Panzer, Nora Trinks, J. Eilts, J. Wagener, D. Turra, A. Di Pietro, M. Sauer, Ulrich Terpitz

Date Published: 23rd Apr 2020

Journal: Front Microbiol

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.

Authors: Prasad Dasari, Naile Koleci, Iordana Shopova, D. Wartenberg, Niklas Beyersdorf, Stefanie Dietrich, A. Sahagun-Ruiz, Marc Thilo Figge, Christine Skerka, Axel Brakhage, Peter Zipfel

Date Published: 12th Dec 2019

Journal: Front Immunol

Abstract (Expand)

The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTL a/a and MTLalpha/alpha cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.IMPORTANCE Sexual reproduction is an important mechanism in the evolution of species, since it allows the combination of advantageous traits of individual members in a population. The pathogenic yeast Candida albicans is a diploid organism that normally propagates in a clonal fashion, because heterozygosity at the mating type locus (MTL) inhibits mating between cells. Here we show that C. albicans cells that have acquired drug resistance mutations during treatment with the commonly used antifungal agent fluconazole rapidly develop further increased resistance by genome rearrangements that result in simultaneous loss of heterozygosity for the mutated allele and the mating type locus. This enables the drug-resistant cells of a population to switch to the mating-competent opaque morphology and mate with each other to combine different individually acquired resistance mechanisms. The tetraploid mating products reassort their merged genomes and, under selective pressure by the drug, generate highly resistant progeny that have retained the advantageous mutated alleles. Parasexual propagation, promoted by stress-induced genome rearrangements that result in the acquisition of mating competence in cells with adaptive mutations, may therefore be an important mechanism in the evolution of C. albicans populations.

Authors: C. Popp, Bernardo Ramirez-Zavala, S. Schwanfelder, I. Kruger, Joachim Morschhäuser

Date Published: 5th Feb 2019

Journal: mBio

Abstract (Expand)

Mold specific T-cells have been described as a supportive biomarker to monitor invasive mycoses and mold exposure. This study comparatively evaluated frequencies and cytokine profiles of Aspergillus fumigatus and Mucorales reactive T-cells depending on environmental mold exposure. Peripheral blood mononuclear cells (PBMCs) obtained from 35 healthy donors were stimulated with mycelial lysates of A. fumigatus and three human pathogenic Mucorales species. CD154(+) specific T-cells were quantified by flow cytometry. In a second cohort of 20 additional donors, flow cytometry was complemented by 13-plex cytokine assays. Mold exposure of the subjects was determined using a previously established questionnaire. Highly exposed subjects exhibited significantly greater CD154(+)A. fumigatus and Mucorales specific naive and memory T-helper cell frequencies. Significant correlation (r = 0.48 - 0.79) was found between A. fumigatus and Mucorales specific T-cell numbers. Logistic regression analyses revealed that combined analysis of mold specific T-cell frequencies and selected cytokine markers (A. fumigatus: IL-5 and TNF-alpha, R. arrhizus: IL-17A and IL-13) significantly improves classification performance, resulting in 75-90 % predictive power using 10-fold cross-validation. In conclusion, mold specific T-cell frequencies and their cytokine signatures offer promising potential in the assessment of environmental mold exposure. The cytokines identified in this pilot study should be validated in the clinical setting, e. g. in patients with hypersensitivity pneumonitis.

Authors: L. Page, P. Weis, T. Muller, M. Dittrich, M. Lazariotou, M. Dragan, A. M. Waaga-Gasser, J. Helm, T. Dandekar, H. Einsele, J. Loffler, A. J. Ullmann, S. Wurster

Date Published: 12th Sep 2018

Journal: Int J Med Microbiol


Not specified

Authors: S. Durmus, T. Cakir, Reinhard Guthke

Date Published: 4th Feb 2016

Journal: Front Microbiol

Abstract (Expand)

Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium.

Authors: F. Mech, D. Wilson, T. Lehnert, Bernhard Hube, M. Thilo Figge

Date Published: 20th Nov 2013

Journal: Cytometry A

Powered by
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH