Publications

What is a Publication?
14 Publications visible to you, out of a total of 14

Abstract (Expand)

Aspergillus fumigatus is the predominant airborne pathogenic fungus causing invasive aspergillosis in immunocompromised patients. During infection A. fumigatus has to adapt to oxygen-limiting conditions in inflammatory or necrotic tissue. Previously, we identified a mitochondrial protein to be highly up-regulated during hypoxic adaptation. Here, this protein was found to represent the novel oxidoreductase HorA. In Saccharomyces cerevisiae a homologue was shown to play a role in biosynthesis of coenzyme Q. Consistently, reduced coenzyme Q content in the generated DeltahorA mutant indicated a respective function in A. fumigatus. Since coenzyme Q is involved in cellular respiration and maintaining cellular redox homeostasis, the strain DeltahorA displayed an impaired response to both oxidative and reductive stress, a delay in germination and an accumulation of NADH. Moreover, an increased resistance against antifungal drugs was observed. All phenotypes were completely reversed by the addition of the synthetic electron carrier menadione. The deletion strain DeltahorA showed significantly attenuated virulence in two murine infection models of invasive pulmonary aspergillosis. Therefore, the biosynthesis of coenzyme Q and, particularly, the fungal-specific protein HorA play a crucial role in virulence of A. fumigatus. Due to its absence in mammals, HorA might represent a novel therapeutic target against fungal infections. This article is protected by copyright. All rights reserved.

Authors: K. Kroll, E. Shekhova, D. J. Mattern, A. Thywissen, , M. Strassburger, T. Heinekamp, , ,

Date Published: 19th Mar 2016

Publication Type: Not specified

Abstract (Expand)

The human pathogenic fungus Aspergillus fumigatus normally lives as a soil saprophyte. Its environment includes poorly oxygenated substrates that also occur during tissue invasive growth of the fungus in the human host. Up to now, few cellular factors have been identified that allow the fungus to efficiently adapt its energy metabolism to hypoxia. Here, we cultivated A. fumigatus in an O2 -controlled fermenter and analysed its responses to O2 limitation on a minute timescale. Transcriptome sequencing revealed several genes displaying a rapid and highly dynamic regulation. One of these genes was analysed in detail and found to encode fungoglobin, a previously uncharacterized member of the sensor globin protein family widely conserved in filamentous fungi. Besides low O2 , iron limitation also induced transcription, but regulation was not entirely dependent on the two major transcription factors involved in adaptation to iron starvation and hypoxia, HapX and SrbA respectively. The protein was identified as a functional haemoglobin, as binding of this cofactor was detected for the recombinant protein. Gene deletion in A. fumigatus confirmed that haem-binding fungoglobins are important for growth in microaerobic environments with O2 levels far lower than in hypoxic human tissue.

Authors: F. Hillmann, , N. Beckmann, M. Cyrulies, M. Strassburger, T. Heinekamp, H. Haas, , ,

Date Published: 7th Jul 2014

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH