Publications

Abstract (Expand)

Most unicellular organisms live in communities and express different phenotypes. Many efforts have been made to study the population dynamics of such complex communities of cells, coexisting as well-coordinated units. Minimal models based on ordinary differential equations are powerful tools that can help us understand complex phenomena. They represent an appropriate compromise between complexity and tractability; they allow a profound and comprehensive analysis, which is still easy to understand. Evolutionary game theory is another powerful tool that can help us understand the costs and benefits of the decision a particular cell of a unicellular social organism takes when faced with the challenges of the biotic and abiotic environment. This work is a binocular view at the population dynamics of such a community through the objectives of minimal modelling and evolutionary game theory. We test the behaviour of the community of a unicellular social organism at three levels of antibiotic stress. Even in the absence of the antibiotic, spikes in the fraction of resistant cells can be observed indicating the importance of bet hedging. At moderate level of antibiotic stress, we witness cyclic dynamics reminiscent of the renowned rock-paper-scissors game. At a very high level, the resistant type of strategy is the most favourable.

Authors: R. Garde, Jan Ewald, A. T. Kovacs, Stefan Schuster

Date Published: 3rd Nov 2020

Journal: Open Biol

Abstract (Expand)

Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can reach a point where the immune system can no longer clearly distinguish between self and non-self cells. Thus, a trade-off between attacking disguised pathogens and erroneously attacking host cells has to be made. Based on signalling theory and protein-interaction modelling, we here present a mathematical model of molecular crypsis of pathogenic fungi using the example of Candida albicans. We tackle the question whether perfect crypsis is feasible, which would imply that protection of human cells by complement factors would be useless. The model identifies pathogen abundance relative to host cell abundance as the predominant factor influencing successful or unsuccessful molecular crypsis. If pathogen cells gain a (locally) quantitative advantage over host cells, even autoreactivity may occur. Our new model enables insights into the mechanisms of candidiasis-induced sepsis and complement-associated autoimmune diseases.

Authors: S. N. Lang, S. Germerodt, C. Glock, Christine Skerka, Peter Zipfel, Stefan Schuster

Date Published: 20th Feb 2019

Journal: PLoS One

Abstract (Expand)

The identification of disease-associated modules based on protein-protein interaction networks (PPINs) and gene expression data has provided new insights into the mechanistic nature of diverse diseases. However, their identification is hampered by the detection of protein communities within large-scale, whole-genome PPINs. A presented successful strategy detects a PPIN's community structure based on the maximal clique enumeration problem (MCE), which is a non-deterministic polynomial time-hard problem. This renders the approach computationally challenging for large PPINs implying the need for new strategies. We present ModuleDiscoverer, a novel approach for the identification of regulatory modules from PPINs and gene expression data. Following the MCE-based approach, ModuleDiscoverer uses a randomization heuristic-based approximation of the community structure. Given a PPIN of Rattus norvegicus and public gene expression data, we identify the regulatory module underlying a rodent model of non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD). The module is validated using single-nucleotide polymorphism (SNP) data from independent genome-wide association studies and gene enrichment tests. Based on gene enrichment tests, we find that ModuleDiscoverer performs comparably to three existing module-detecting algorithms. However, only our NASH-module is significantly enriched with genes linked to NAFLD-associated SNPs. ModuleDiscoverer is available at http://www.hki-jena.de/index.php/0/2/490 (Others/ModuleDiscoverer).

Authors: S. Vlaic, Theresia Conrad, C. Tokarski-Schnelle, M. Gustafsson, U. Dahmen, Reinhard Guthke, Stefan Schuster

Date Published: 11th Jan 2018

Journal: Sci Rep

Abstract (Expand)

The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage-Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage-C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells.

Authors: Sybille Dühring, Jan Ewald, S. Germerodt, C. Kaleta, Thomas Dandekar, Stefan Schuster

Date Published: 14th Jul 2017

Journal: J R Soc Interface

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH