Abstract (Expand)

High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens. For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-kappaB (nuclear factor kappaB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral clearance by counteracting viral nucleic acid-induced activation of type I interferon signaling. Together, the analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance of post-transplant infections.

Authors: Bastian Seelbinder, J. Wallstabe, Lothar Marischen, Esther Weiß, S. Wurster, L. Page, C. Loffler, L. Bussemer, A. L. Schmitt, Thomas Wolf, Jörg Linde, L. Cicin-Sain, J. Becker, U. Kalinke, J. Vogel, Gianni Panagiotou, Hermann Einsele, A. J. Westermann, Sascha Schäuble, Jürgen Löffler

Date Published: 17th Nov 2020

Journal: Cell Rep

Abstract (Expand)

Aspergillus fumigatus is an opportunistic fungal pathogen that can cause life-threatening invasive lung infections in immunodeficient patients. The cellular and molecular processes of infection during onset, establishment, and progression of A. fumigatus infections are highly complex and depend on both fungal attributes and the immune status of the host. Therefore, preclinical animal models are of paramount importance to investigate and gain better insight into the infection process. Yet, despite their extensive use, commonly employed murine models of invasive pulmonary aspergillosis are not well understood due to analytical limitations. Here, we present quantitative light sheet fluorescence microscopy (LSFM) to describe fungal growth and the local immune response in whole lungs at cellular resolution within its anatomical context. We analyzed three very common murine models of pulmonary aspergillosis based on immunosuppression with corticosteroids, chemotherapy-induced leukopenia, or myeloablative irradiation. LSFM uncovered distinct architectures of fungal growth and degrees of tissue invasion in each model. Furthermore, LSFM revealed the spatial distribution, interaction, and activation of two key immune cell populations in antifungal defense: alveolar macrophages and polymorphonuclear neutrophils. Interestingly, the patterns of fungal growth correlated with the detected effects of the immunosuppressive regimens on the local immune cell populations. Moreover, LSFM demonstrates that the commonly used intranasal route of spore administration did not result in complete intra-alveolar deposition, as about 80% of fungal growth occurred outside the alveolar space. Hence, characterization by LSFM is more rigorous than by previously used methods employing murine models of invasive pulmonary aspergillosis and pinpoints their strengths and limitations.IMPORTANCE The use of animal models of infection is essential to advance our understanding of the complex host-pathogen interactions that take place during Aspergillus fumigatus lung infections. As in the case of humans, mice need to suffer an immune imbalance in order to become susceptible to invasive pulmonary aspergillosis (IPA), the most serious infection caused by A. fumigatus There are several immunosuppressive regimens that are routinely used to investigate fungal growth and/or immune responses in murine models of invasive pulmonary aspergillosis. However, the precise consequences of the use of each immunosuppressive model for the local immune populations and for fungal growth are not completely understood. Here, to pin down the scenarios involving commonly used IPA models, we employed light sheet fluorescence microscopy (LSFM) to analyze whole lungs at cellular resolution. Our results will be valuable to optimize and refine animal models to maximize their use in future research.

Authors: J. Amich, Zeinab Mokhtari, Marlene Strobel, E. Vialetto, D. Sheta, Y. Yu, J. Hartweg, N. Kalleda, K. J. Jarick, C. Brede, A. L. Jordan-Garrote, S. Thusek, K. Schmiedgen, Berkan Arslan, J. Pinnecker, C. R. Thornton, M. Gunzer, S. Krappmann, Hermann Einsele, Katrin Heinze, Andreas Beilhack

Date Published: 4th Feb 2020

Journal: mBio

Abstract (Expand)

Invasive aspergillosis (IA) is a life-threatening complication among allogeneic hematopoietic stem cell transplant (alloSCT) recipients. Despite well known risk factors and different available assays, diagnosis of invasive aspergillosis remains challenging. 103 clinical variables from patients with hematological malignancies and subsequent alloSCT were collected. Associations between collected variables and patients with (n = 36) and without IA (n = 36) were investigated by applying univariate and multivariable logistic regression. The predictive power of the final model was tested in an independent patient cohort (23 IA cases and 25 control patients). Findings were investigated further by in vitro studies, which analysed the effect of etanercept on A. fumigatus-stimulated macrophages at the gene expression and cytokine secretion. Additionally, the release of C-X-C motif chemokine ligand 10 (CXCL10) in patient sera was studied. Low monocyte concentration (p = 4.8 x 10(-06)), severe GvHD of the gut (grade 2-4) (p = 1.08 x 10(-02)) and etanercept treatment of GvHD (p = 3.5 x 10(-03)) were significantly associated with IA. Our studies showed that etanercept lowers CXCL10 concentrations in vitro and ex vivo and down-regulates genes involved in immune responses and TNF-alpha signaling. Our study offers clinicians new information regarding risk factors for IA including low monocyte counts and administration of etanercept. After necessary validation, such information may be used for decision making regarding antifungal prophylaxis or closely monitoring patients at risk.

Authors: T. Zoran, Michael Weber, J. Springer, P. L. White, J. Bauer, A. Schober, C. Loffler, B. Seelbinder, Kerstin Hünniger, Oliver Kurzai, A. Scherag, Sascha Schäuble, C. O. Morton, Hermann Einsele, Jörg Linde, Jürgen Löffler

Date Published: 21st Nov 2019

Journal: Sci Rep

Abstract (Expand)

Organisms do not exist isolated from each other, but constantly interact. Cells can sense the presence of interaction partners by a range of receptors and, via complex regulatory networks, specifically react by changing the expression of many of their genes. Technological advances in next-generation sequencing over the recent years now allow us to apply RNA sequencing to two species at the same time (dual RNA-seq), and thus to directly study the gene expression of two interacting species without the need to physically separate cells or RNA. In this review, we give an overview over the latest studies in interspecies interactions made possible by dual RNA-seq, ranging from pathogenic to symbiotic relationships. We summarize state-of-the-art experimental techniques, bioinformatic data analysis and data interpretation, while also highlighting potential problems and pitfalls starting from the selection of meaningful time points and number of reads to matters of rRNA depletion. A short outlook on new trends in the field of dual RNA-seq concludes this review, looking at sequencing of non-coding RNAs during host-pathogen interactions and the prediction of molecular interspecies interactions networks.

Authors: Thomas Wolf, P. Kammer, S. Brunke, Jörg Linde

Date Published: 29th Sep 2017

Journal: Curr Opin Microbiol

Powered by
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH