Publications

Abstract (Expand)

BACKGROUND: Antibiotic treatment has a well-established detrimental effect on the gut bacterial composition, but effects on the fungal community are less clear. Bacteria in the lumen of the gastrointestinal tract may limit fungal colonization and invasion. Antibiotic drugs targeting bacteria are therefore seen as an important risk factor for fungal infections and induced allergies. However, antibiotic effects on gut bacterial-fungal interactions, including disruption and resilience of fungal community compositions, were not investigated in humans. We analysed stool samples collected from 14 healthy human participants over 3 months following a 6-day antibiotic administration. We integrated data from shotgun metagenomics, metatranscriptomics, metabolomics, and fungal ITS2 sequencing. RESULTS: While the bacterial community recovered mostly over 3 months post treatment, the fungal community was shifted from mutualism at baseline to competition. Half of the bacterial-fungal interactions present before drug intervention had disappeared 3 months later. During treatment, fungal abundances were associated with the expression of bacterial genes with functions for cell growth and repair. By extending the metagenomic species approach, we revealed bacterial strains inhibiting the opportunistic fungal pathogen Candida albicans. We demonstrated in vitro how C. albicans pathogenicity and host cell damage might be controlled naturally in the human gut by bacterial metabolites such as propionate or 5-dodecenoate. CONCLUSIONS: We demonstrated that antibacterial drugs have long-term influence on the human gut mycobiome. While bacterial communities recovered mostly 30-days post antibacterial treatment, the fungal community was shifted from mutualism towards competition. Video abstract.

Authors: Bastian Seelbinder, J. Chen, S. Brunke, R. Vazquez-Uribe, R. Santhaman, A. C. Meyer, F. S. de Oliveira Lino, K. F. Chan, D. Loos, L. Imamovic, C. C. Tsang, R. P. Lam, S. Sridhar, K. Kang, Bernhard Hube, P. C. Woo, M. O. A. Sommer, Gianni Panagiotou

Date Published: 12th Sep 2020

Journal: Microbiome

Abstract (Expand)

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.

Authors: S. Ruben, E. Garbe, Selene Mogavero, Daniela Albrecht-Eckardt, D. Hellwig, A. Hader, Thomas Krüger, K. Gerth, Ilse Jacobsen, O. Elshafee, S. Brunke, Kerstin Hünniger, Olaf Kniemeyer, Axel Brakhage, Joachim Morschhäuser, Bernhard Hube, Slavena Vylkova, Oliver Kurzai, R. Martin

Date Published: 28th Apr 2020

Journal: mBio

Abstract (Expand)

Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic Lactobacillus rhamnosus and the opportunistic pathogen Candida albicans show that pre-colonization of the intestinal lumen of the model by L. rhamnosus reduces C. albicans-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the in vitro model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.

Authors: M. Maurer, M. S. Gresnigt, A. Last, T. Wollny, F. Berlinghof, R. Pospich, Z. Cseresnyes, A. Medyukhina, K. Graf, M. Groger, M. Raasch, F. Siwczak, S. Nietzsche, Ilse Jacobsen, Marc Thilo Figge, Bernhard Hube, O. Huber, A. S. Mosig

Date Published: 10th Aug 2019

Journal: Biomaterials

Abstract (Expand)

Although morphological plasticity is a central virulence trait of Candida albicans, the number of filament-associated genes and the interplay of mechanisms regulating their expression remain unknown. By correlation-based network modeling of the transcriptional response to different defined external stimuli for morphogenesis we identified a set of eight genes with highly correlated expression patterns, forming a core filamentation response. This group of genes included ALS3, ECE1, HGT2, HWP1, IHD1 and RBT1 which are known or supposed to encode for cell- wall associated proteins as well as the Rac1 guanine nucleotide exchange factor encoding gene DCK1 and the unknown function open reading frame orf19.2457. The validity of network modeling was confirmed using a dataset of advanced complexity that describes the transcriptional response of C. albicans during epithelial invasion as well as comparing our results with other previously published transcriptome studies. Although the set of core filamentation response genes was quite small, several transcriptional regulators are involved in the control of their expression, depending on the environmental condition.

Authors: R. Martin, Daniela Albrecht-Eckardt, S. Brunke, Bernhard Hube, Kerstin Hünniger, Oliver Kurzai

Date Published: 14th Mar 2013

Journal: PLoS One

Abstract (Expand)

The ability to adapt to diverse micro-environmental challenges encountered within a host is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have quantified C. albicans and M. musculus gene expression dynamics during phagocytosis by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq. A robust network inference map was generated from this dataset using NetGenerator, predicting novel interactions between the host and the pathogen. We experimentally verified predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell wall was found to regulate the expression of fungal Hap3 target genes as predicted by the network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent manner, further suggesting a role for Mta2 in host-pathogen interplay as predicted in the network inference model. We propose an integrated model for the functionality of these sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering the immune response to the pathogen. We show the applicability of network inference to predict interactions between host-pathogen pairs, demonstrating the usefulness of this systems biology approach to decipher mechanisms of microbial pathogenesis.

Authors: L. Tierney, Jörg Linde, S. Muller, S. Brunke, J. C. Molina, Bernhard Hube, U. Schock, Reinhard Guthke, K. Kuchler

Date Published: 12th Mar 2012

Journal: Front Microbiol

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH