Publications

Abstract (Expand)

Aspergillus fumigatus is a common airborne fungal pathogen of humans and a significant source of mortality in immunocompromised individuals. Here, we provide the most extensive cell wall proteome profiling to date of A. fumigatus resting conidia, the fungal morphotype pertinent to first contact with the host. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified proteins within the conidial cell wall by hydrogen-fluoride (HF)-pyridine extraction and proteins exposed on the surface using a trypsin-shaving approach. One protein, designated conidial cell wall protein A (CcpA), was identified by both methods and was found to be nearly as abundant as hydrophobic rodlet layer-forming protein RodA. CcpA, an amphiphilic protein, like RodA, peaks in expression during sporulation on resting conidia. Despite high cell wall abundance, the cell surface structure of DeltaccpA resting conidia appeared normal. However, trypsin shaving of DeltaccpA conidia revealed novel surface-exposed proteins not detected on conidia of the wild-type strain. Interestingly, the presence of swollen DeltaccpA conidia led to higher activation of neutrophils and dendritic cells than was seen with wild-type conidia and caused significantly less damage to epithelial cells in vitro In addition, virulence was highly attenuated when cortisone-treated, immunosuppressed mice were infected with DeltaccpA conidia. CcpA-specific memory T cell responses were detectable in healthy human donors naturally exposed to A. fumigatus conidia, suggesting a role for CcpA as a structural protein impacting conidial immunogenicity rather than possessing a protein-intrinsic immunosuppressive effect. Together, these data suggest that CcpA serves as a conidial stealth protein by altering the conidial surface structure to minimize innate immune recognition.IMPORTANCE The mammalian immune system relies on recognition of pathogen surface antigens for targeting and clearance. In the absence of immune evasion strategies, pathogen clearance is rapid. In the case of Aspergillus fumigatus, the successful fungus must avoid phagocytosis in the lung to establish invasive infection. In healthy individuals, fungal spores are cleared by immune cells; however, in immunocompromised patients, clearance mechanisms are impaired. Here, using proteome analyses, we identified CcpA as an important fungal spore protein involved in pathogenesis. A. fumigatus lacking CcpA was more susceptible to immune recognition and prompt eradication and, consequently, exhibited drastically attenuated virulence. In infection studies, CcpA was required for virulence in infected immunocompromised mice, suggesting that it could be used as a possible immunotherapeutic or diagnostic target in the future. In summary, our report adds a protein to the list of those known to be critical to the complex fungal spore surface environment and, more importantly, identifies a protein important for conidial immunogenicity during infection.

Authors: V. Voltersen, M. G. Blango, S. Herrmann, F. Schmidt, Thorsten Heinekamp, M. Strassburger, Thomas Krüger, P. Bacher, Jasmin Lother, Esther Weiß, Kerstin Hünniger, H. Liu, P. Hortschansky, A. Scheffold, Jürgen Löffler, S. Krappmann, S. Nietzsche, Oliver Kurzai, Hermann Einsele, Olaf Kniemeyer, S. G. Filler, U. Reichard, Axel Brakhage

Date Published: No date defined

Journal: MBio

Abstract (Expand)

Filamentous fungi of the genus Aspergillus are of particular interest for biotechnological applications due to their natural capacity to secrete carbohydrate-active enzymes (CAZy) that target plant biomass. The presence of easily metabolizable sugars such as glucose, whose concentrations increase during plant biomass hydrolysis, results in the repression of CAZy-encoding genes in a process known as carbon catabolite repression (CCR), which is undesired for the purpose of large-scale enzyme production. To date, the C2H2 transcription factor CreA has been described as the major CC repressor in Aspergillus spp., although little is known about the role of posttranslational modifications in this process. In this work, phosphorylation sites were identified by mass spectrometry on Aspergillus nidulans CreA, and subsequently, the previously identified but uncharacterized site S262, the characterized site S319, and the newly identified sites S268 and T308 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was investigated. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 was not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. All sites were shown to be important for glycogen and trehalose metabolism. This study highlights the importance of CreA phosphorylation sites for the regulation of CCR. These sites are interesting targets for biotechnological strain engineering without the need to delete essential genes, which could result in undesired side effects.IMPORTANCE In filamentous fungi, the transcription factor CreA controls carbohydrate metabolism through the regulation of genes encoding enzymes required for the use of alternative carbon sources. In this work, phosphorylation sites were identified on Aspergillus nidulans CreA, and subsequently, the two newly identified sites S268 and T308, the previously identified but uncharacterized site S262, and the previously characterized site S319 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was characterized. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 is not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. This work characterized novel CreA phosphorylation sites under carbon catabolite-repressing conditions and showed that they are crucial for CreA protein turnover, control of carbohydrate utilization, and biotechnologically relevant enzyme production.

Authors: L. J. de Assis, L. P. Silva, O. Bayram, P. Dowling, Olaf Kniemeyer, Thomas Krüger, Axel Brakhage, Y. Chen, L. Dong, K. Tan, K. H. Wong, L. N. A. Ries, G. H. Goldman

Date Published: 5th Jan 2021

Journal: mBio

Abstract (Expand)

Lipid rafts form signaling platforms on biological membranes with incompletely characterized role in immune response to infection. Here we report that lipid-raft microdomains are essential components of phagolysosomal membranes of macrophages and depend on flotillins. Genetic deletion of flotillins demonstrates that the assembly of both major defense complexes vATPase and NADPH oxidase requires membrane microdomains. Furthermore, we describe a virulence mechanism leading to dysregulation of membrane microdomains by melanized wild-type conidia of the important human-pathogenic fungus Aspergillus fumigatus resulting in reduced phagolysosomal acidification. We show that phagolysosomes with ingested melanized conidia contain a reduced amount of free Ca(2+) ions and that inhibition of Ca(2+)-dependent calmodulin activity led to reduced lipid-raft formation. We identify a single-nucleotide polymorphism in the human FLOT1 gene resulting in heightened susceptibility for invasive aspergillosis in hematopoietic stem cell transplant recipients. Collectively, flotillin-dependent microdomains on the phagolysosomal membrane play an essential role in protective antifungal immunity.

Authors: F. Schmidt, A. Thywissen, M. Goldmann, C. Cunha, Z. Cseresnyes, H. Schmidt, M. Rafiq, S. Galiani, M. H. Graler, G. Chamilos, J. F. Lacerda, A. Jr Campos, C. Eggeling, Marc Thilo Figge, Thorsten Heinekamp, S. G. Filler, A. Carvalho, Axel Brakhage

Date Published: 18th Aug 2020

Journal: Cell Rep

Abstract (Expand)

Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC-MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage-L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.

Authors: M. I. A. Hassan, J. M. Kruse, Thomas Krüger, H. M. Dahse, Z. Cseresnyes, M. G. Blango, Hortense Slevogt, F. Horhold, V. Ast, R. Konig, Marc Thilo Figge, Olaf Kniemeyer, Axel Brakhage, Kerstin Voigt

Date Published: 26th Jun 2020

Journal: Environ Microbiol

Abstract (Expand)

Fungal spores and hyphal fragments play an important role as allergens in respiratory diseases. In this study, we performed trypsin shaving and secretome analyses to identify the surface-exposed proteins and secreted/shed proteins of Aspergillus fumigatus conidia, respectively. We investigated the surface proteome under different conditions, including temperature variation and germination. We found that the surface proteome of resting A. fumigatus conidia is not static but instead unexpectedly dynamic, as evidenced by drastically different surface proteomes under different growth conditions. Knockouts of two abundant A. fumigatus surface proteins, ScwA and CweA, were found to function only in fine-tuning the cell wall stress response, implying that the conidial surface is very robust against perturbations. We then compared the surface proteome of A. fumigatus to other allergy-inducing molds, including Alternaria alternata, Penicillium rubens, and Cladosporium herbarum, and performed comparative proteomics on resting and swollen conidia, as well as secreted proteins from germinating conidia. We detected 125 protein ortholog groups, including 80 with putative catalytic activity, in the extracellular region of all four molds, and 42 nonorthologous proteins produced solely by A. fumigatus. Ultimately, this study highlights the dynamic nature of the A. fumigatus conidial surface and provides targets for future diagnostics and immunotherapy.

Authors: M. G. Blango, A. Pschibul, Flora Rivieccio, Thomas Krüger, M. Rafiq, L. J. Jia, T. Zheng, M. Goldmann, V. Voltersen, J. Li, Gianni Panagiotou, Olaf Kniemeyer, Axel Brakhage

Date Published: 1st May 2020

Journal: J Proteome Res

Abstract (Expand)

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCE Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.

Authors: S. Ruben, E. Garbe, Selene Mogavero, Daniela Albrecht-Eckardt, D. Hellwig, A. Hader, Thomas Krüger, K. Gerth, Ilse Jacobsen, O. Elshafee, S. Brunke, Kerstin Hünniger, Olaf Kniemeyer, Axel Brakhage, Joachim Morschhäuser, Bernhard Hube, Slavena Vylkova, Oliver Kurzai, R. Martin

Date Published: 28th Apr 2020

Journal: mBio

Abstract (Expand)

Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.

Authors: Iordana Shopova, I. Belyaev, Prasad Dasari, S. Jahreis, M. C. Stroe, Z. Cseresnyes, Ann-Kathrin Zimmermann, A. Medyukhina, Carl-Magnus Svensson, Thomas Krüger, V. Szeifert, S. Nietzsche, Theresia Conrad, M. G. Blango, Olaf Kniemeyer, M. von Lilienfeld-Toal, Peter Zipfel, E. Ligeti, Marc Thilo Figge, Axel Brakhage

Date Published: 14th Apr 2020

Journal: mBio

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.

Authors: Prasad Dasari, Naile Koleci, Iordana Shopova, D. Wartenberg, Niklas Beyersdorf, Stefanie Dietrich, A. Sahagun-Ruiz, Marc Thilo Figge, Christine Skerka, Axel Brakhage, Peter Zipfel

Date Published: 12th Dec 2019

Journal: Front Immunol

Abstract (Expand)

The epidithiodioxopiperazine gliotoxin is a virulence factor of Aspergillus fumigatus, the most important airborne fungal pathogen of humans. Gliotoxin suppresses innate immunity in invasive aspergillosis, particularly by compromising neutrophils, but the underlying molecular mechanisms remain elusive. Neutrophils are the first responders among innate immune cells recruited to sites of infection by the chemoattractant leukotriene (LT)B4 that is biosynthesized by 5-lipoxygenase and LTA4 hydrolase (LTA4H). Here, we identified gliotoxin as inhibitor of LTA4H that selectively abrogates LTB4 formation in human leukocytes and in distinct animal models. Gliotoxin failed to inhibit the formation of other eicosanoids and the aminopeptidase activity of the bifunctional LTA4H. Suppression of LTB4 formation by gliotoxin required the cellular environment and/or reducing conditions, and only the reduced form of gliotoxin inhibited LTA4H activity. Conclusively, gliotoxin suppresses the biosynthesis of the potent neutrophil chemoattractant LTB4 by direct interference with LTA4H thereby impairing neutrophil functions in invasive aspergillosis.

Authors: S. Konig, S. Pace, H. Pein, Thorsten Heinekamp, J. Kramer, E. Romp, M. Strassburger, F. Troisi, A. Proschak, J. Dworschak, K. Scherlach, A. Rossi, L. Sautebin, J. Z. Haeggstrom, C. Hertweck, Axel Brakhage, J. Gerstmeier, E. Proschak, O. Werz

Date Published: 18th Apr 2019

Journal: Cell Chem Biol

Abstract (Expand)

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.

Authors: P. Bacher, T. Hohnstein, E. Beerbaum, M. Rocker, M. G. Blango, S. Kaufmann, J. Rohmel, P. Eschenhagen, C. Grehn, K. Seidel, V. Rickerts, L. Lozza, U. Stervbo, M. Nienen, N. Babel, J. Milleck, M. Assenmacher, O. A. Cornely, M. Ziegler, H. Wisplinghoff, G. Heine, M. Worm, B. Siegmund, J. Maul, P. Creutz, C. Tabeling, C. Ruwwe-Glosenkamp, L. E. Sander, C. Knosalla, S. Brunke, Bernhard Hube, Olaf Kniemeyer, Axel Brakhage, C. Schwarz, A. Scheffold

Date Published: 7th Mar 2019

Journal: Cell

Abstract (Expand)

BACKGROUND: Omics data provide deep insights into overall biological processes of organisms. However, integration of data from different molecular levels such as transcriptomics and proteomics, still remains challenging. Analyzing lists of differentially abundant molecules from diverse molecular levels often results in a small overlap mainly due to different regulatory mechanisms, temporal scales, and/or inherent properties of measurement methods. Module-detecting algorithms identifying sets of closely related proteins from protein-protein interaction networks (PPINs) are promising approaches for a better data integration. RESULTS: Here, we made use of transcriptome, proteome and secretome data from the human pathogenic fungus Aspergillus fumigatus challenged with the antifungal drug caspofungin. Caspofungin targets the fungal cell wall which leads to a compensatory stress response. We analyzed the omics data using two different approaches: First, we applied a simple, classical approach by comparing lists of differentially expressed genes (DEGs), differentially synthesized proteins (DSyPs) and differentially secreted proteins (DSePs); second, we used a recently published module-detecting approach, ModuleDiscoverer, to identify regulatory modules from PPINs in conjunction with the experimental data. Our results demonstrate that regulatory modules show a notably higher overlap between the different molecular levels and time points than the classical approach. The additional structural information provided by regulatory modules allows for topological analyses. As a result, we detected a significant association of omics data with distinct biological processes such as regulation of kinase activity, transport mechanisms or amino acid metabolism. We also found a previously unreported increased production of the secondary metabolite fumagillin by A. fumigatus upon exposure to caspofungin. Furthermore, a topology-based analysis of potential key factors contributing to drug-caused side effects identified the highly conserved protein polyubiquitin as a central regulator. Interestingly, polyubiquitin UbiD neither belonged to the groups of DEGs, DSyPs nor DSePs but most likely strongly influenced their levels. CONCLUSION: Module-detecting approaches support the effective integration of multilevel omics data and provide a deep insight into complex biological relationships connecting these levels. They facilitate the identification of potential key players in the organism's stress response which cannot be detected by commonly used approaches comparing lists of differentially abundant molecules.

Authors: Theresia Conrad, Olaf Kniemeyer, S. G. Henkel, T. Kruger, D. J. Mattern, V. Valiante, Reinhard Guthke, Ilse Jacobsen, Axel Brakhage, S. Vlaic, Jörg Linde

Date Published: 20th Oct 2018

Journal: BMC Syst Biol

Abstract (Expand)

Aspergillus fumigatus is a common airborne fungal pathogen of humans and a significant source of mortality in immunocompromised individuals. Here, we provide the most extensive cell wall proteome profiling to date of A. fumigatus resting conidia, the fungal morphotype pertinent to first contact with the host. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified proteins within the conidial cell wall by hydrogen-fluoride (HF)-pyridine extraction and proteins exposed on the surface using a trypsin-shaving approach. One protein, designated conidial cell wall protein A (CcpA), was identified by both methods and was found to be nearly as abundant as hydrophobic rodlet layer-forming protein RodA. CcpA, an amphiphilic protein, like RodA, peaks in expression during sporulation on resting conidia. Despite high cell wall abundance, the cell surface structure of DeltaccpA resting conidia appeared normal. However, trypsin shaving of DeltaccpA conidia revealed novel surface-exposed proteins not detected on conidia of the wild-type strain. Interestingly, the presence of swollen DeltaccpA conidia led to higher activation of neutrophils and dendritic cells than was seen with wild-type conidia and caused significantly less damage to epithelial cells in vitro In addition, virulence was highly attenuated when cortisone-treated, immunosuppressed mice were infected with DeltaccpA conidia. CcpA-specific memory T cell responses were detectable in healthy human donors naturally exposed to A. fumigatus conidia, suggesting a role for CcpA as a structural protein impacting conidial immunogenicity rather than possessing a protein-intrinsic immunosuppressive effect. Together, these data suggest that CcpA serves as a conidial stealth protein by altering the conidial surface structure to minimize innate immune recognition.IMPORTANCE The mammalian immune system relies on recognition of pathogen surface antigens for targeting and clearance. In the absence of immune evasion strategies, pathogen clearance is rapid. In the case of Aspergillus fumigatus, the successful fungus must avoid phagocytosis in the lung to establish invasive infection. In healthy individuals, fungal spores are cleared by immune cells; however, in immunocompromised patients, clearance mechanisms are impaired. Here, using proteome analyses, we identified CcpA as an important fungal spore protein involved in pathogenesis. A. fumigatus lacking CcpA was more susceptible to immune recognition and prompt eradication and, consequently, exhibited drastically attenuated virulence. In infection studies, CcpA was required for virulence in infected immunocompromised mice, suggesting that it could be used as a possible immunotherapeutic or diagnostic target in the future. In summary, our report adds a protein to the list of those known to be critical to the complex fungal spore surface environment and, more importantly, identifies a protein important for conidial immunogenicity during infection.

Authors: V. Voltersen, M. G. Blango, S. Herrmann, F. Schmidt, Thorsten Heinekamp, M. Strassburger, Thomas Krüger, P. Bacher, Jasmin Lother, Esther Weiß, Kerstin Hünniger, H. Liu, P. Hortschansky, A. Scheffold, Jürgen Löffler, S. Krappmann, S. Nietzsche, Oliver Kurzai, Hermann Einsele, Olaf Kniemeyer, S. G. Filler, U. Reichard, Axel Brakhage

Date Published: 2nd Oct 2018

Journal: mBio

Abstract (Expand)

The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6-7 and SCR20. FHL-1 binds via SCRs6-7, and FHR1 via SCRs3-5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Deltaaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Deltaaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Deltaaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.

Authors: Prasad Dasari, Iordana Shopova, M. Stroe, D. Wartenberg, H. Martin-Dahse, Niklas Beyersdorf, P. Hortschansky, Stefanie Dietrich, Z. Cseresnyes, Marc Thilo Figge, M. Westermann, Christine Skerka, Axel Brakhage, Peter Zipfel

Date Published: 1st Sep 2018

Journal: Front Immunol

Abstract (Expand)

During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.

Authors: T. Luo, Thomas Krüger, U. Knupfer, Lydia Kasper, N. Wielsch, Bernhard Hube, A. Kortgen, Michael Bauer, E. J. Giamarellos-Bourboulis, G. Dimopoulos, Axel Brakhage, Olaf Kniemeyer

Date Published: 5th Aug 2016

Journal: J Proteome Res

Abstract (Expand)

Microbial invaders are ubiquitously present and pose the constant risk of infections that are opposed by various defence mechanisms of the human immune system. A tight regulation of the immune response ensures clearance of microbial invaders and concomitantly limits host damage that is crucial for host viability. To investigate the counterplay of infection and inflammation, we simulated the invasion of the human-pathogenic fungus Aspergillus fumigatus in lung alveoli by evolutionary games on graphs. The layered structure of the innate immune system is represented by a sequence of games in the virtual model. We show that the inflammatory cascade of the immune response is essential for microbial clearance and that the inflammation level correlates with the infection-dose. At low infection-doses, corresponding to daily inhalation of conidia, the resident alveolar macrophages may be sufficient to clear infections, however, at higher infection-doses their primary task shifts towards recruitment of neutrophils to infection sites.

Authors: J. Pollmacher, Sandra Timme, Stefan Schuster, Axel Brakhage, Peter Zipfel, Marc Thilo Figge

Date Published: 13th Jun 2016

Journal: Sci Rep

Abstract (Expand)

Aspergillus fumigatus is the predominant airborne pathogenic fungus causing invasive aspergillosis in immunocompromised patients. During infection A. fumigatus has to adapt to oxygen-limiting conditions in inflammatory or necrotic tissue. Previously, we identified a mitochondrial protein to be highly up-regulated during hypoxic adaptation. Here, this protein was found to represent the novel oxidoreductase HorA. In Saccharomyces cerevisiae a homologue was shown to play a role in biosynthesis of coenzyme Q. Consistently, reduced coenzyme Q content in the generated DeltahorA mutant indicated a respective function in A. fumigatus. Since coenzyme Q is involved in cellular respiration and maintaining cellular redox homeostasis, the strain DeltahorA displayed an impaired response to both oxidative and reductive stress, a delay in germination and an accumulation of NADH. Moreover, an increased resistance against antifungal drugs was observed. All phenotypes were completely reversed by the addition of the synthetic electron carrier menadione. The deletion strain DeltahorA showed significantly attenuated virulence in two murine infection models of invasive pulmonary aspergillosis. Therefore, the biosynthesis of coenzyme Q and, particularly, the fungal-specific protein HorA play a crucial role in virulence of A. fumigatus. Due to its absence in mammals, HorA might represent a novel therapeutic target against fungal infections. This article is protected by copyright. All rights reserved.

Authors: K. Kroll, E. Shekhova, D. J. Mattern, A. Thywissen, Ilse Jacobsen, M. Strassburger, T. Heinekamp, Ekaterina Shelest, Axel Brakhage, Olaf Kniemeyer

Date Published: 19th Mar 2016

Journal: Mol Microbiol

Abstract (Expand)

Aspergillus fumigatus is the species that most commonly causes the opportunistic infection invasive aspergillosis (IA) in patients being treated for hematological malignancies. Little is known about the A. fumigatus proteins that trigger the production of Aspergillus-specific IgG antibodies during the course of IA. To characterize the serological response to A. fumigatus protein antigens, mycelial proteins were separated by 2-D gel electrophoresis. The gels were immunoblotted with sera from patients with probable and proven IA and control patients without IA. We identified 49 different fungal proteins, which gave a positive IgG antibody signal. Most of these antigens play a role in primary metabolism and stress responses. Overall, our analysis identified 18 novel protein antigens from A. fumigatus. To determine whether these antigens can be used as diagnostic or prognostic markers or exhibit a protective activity, we employed supervised machine learning with decision trees. We identified two candidates for further analysis, the protein antigens CpcB and Shm2. Heterologously produced Shm2 induced a strongly proinflammatory response in human peripheral blood mononuclear cells after in vitro stimulation. In contrast, CpcB did not activate the immune response of PBMCs. These findings could serve as the basis for the development of an immunotherapy of IA.

Authors: J. Teutschbein, S. Simon, J. Lother, J. Springer, P. Hortschansky, C. O. Morton, Jürgen Löffler, Hermann Einsele, E. Conneally, T. R. Rogers, Reinhard Guthke, Axel Brakhage, Olaf Kniemeyer

Date Published: 15th Mar 2016

Journal: J Proteome Res

Abstract (Expand)

Here, we report the draft genome sequence of Aspergillus calidoustus (strain SF006504). The functional annotation of A. calidoustus predicts a relatively large number of secondary metabolite gene clusters. The presented genome sequence builds the basis for further genome mining.

Authors: F. Horn, Jörg Linde, D. J. Mattern, G. Walther, Reinhard Guthke, K. Scherlach, K. Martin, Axel Brakhage, L. Petzke, Vito Valiante

Date Published: 12th Mar 2016

Journal: Genome Announc

Abstract (Expand)

Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.

Authors: R. Altwasser, C. Baldin, J. Weber, Reinhard Guthke, O. Kniemeyer, Axel Brakhage, Jörg Linde, V. Valiante

Date Published: 10th Sep 2015

Journal: PLoS One

Abstract (Expand)

The genus Penicillium belongs to the phylum Ascomycota and includes a variety of fungal species important for food and drug production. We report the draft genome sequence of Penicillium brasilianum MG11. This strain was isolated from soil, and it was reported to produce different secondary metabolites.

Authors: F. Horn, Jörg Linde, D. J. Mattern, G. Walther, Reinhard Guthke, Axel Brakhage, V. Valiante

Date Published: 5th Sep 2015

Journal: Genome Announc

Abstract (Expand)

Studying the pathobiology of the fungus Aspergillus fumigatus has gained a lot of attention in recent years. This is due to the fact that this fungus is a human pathogen that can cause severe diseases, like invasive pulmonary aspergillosis in immunocompromised patients. Because alveolar macrophages belong to the first line of defense against the fungus, here, we conduct an image-based study on the host-pathogen interaction between murine alveolar macrophages and A. fumigatus. This is achieved by an automated image analysis approach that uses a combination of thresholding, watershed segmentation and feature-based object classification. In contrast to previous approaches, our algorithm allows for the segmentation of individual macrophages in the images and this enables us to compute the distribution of phagocytosed and macrophage-adherent conidia over all macrophages. The novel automated image-based analysis provides access to all cell-cell interactions in the assay and thereby represents a framework that enables comprehensive computation of diverse characteristic parameters and comparative investigation for different strains. We here apply automated image analysis to confocal laser scanning microscopy images of the two wild-type strains ATCC 46645 and CEA10 of A. fumigatus and investigate the ability of macrophages to phagocytose the respective conidia. It is found that the CEA10 strain triggers a stronger response of the macrophages as revealed by a higher phagocytosis ratio and a larger portion of the macrophages being active in the phagocytosis process.

Authors: K. Kraibooj, Hanno Schoeler, C. M. Svensson, Axel Brakhage, Marc Thilo Figge

Date Published: 9th Jun 2015

Journal: Front Microbiol

Abstract (Expand)

Fungal infections have increased dramatically in the last 2 decades, and fighting infectious diseases requires innovative approaches such as the combination of two drugs acting on different targets or even targeting a salvage pathway of one of the drugs. The fungal cell wall biosynthesis is inhibited by the clinically used antifungal drug caspofungin. This antifungal activity has been found to be potentiated by humidimycin, a new natural product identified from the screening of a collection of 20,000 microbial extracts, which has no major effect when used alone. An analysis of transcriptomes and selected Aspergillus fumigatus mutants indicated that humidimycin affects the high osmolarity glycerol response pathway. By combining humidimycin and caspofungin, a strong increase in caspofungin efficacy was achieved, demonstrating that targeting different signaling pathways provides an excellent basis to develop novel anti-infective strategies.

Authors: Vito Valiante, M. C. Monteiro, J. Martin, R. Altwasser, N. El Aouad, I. Gonzalez, Olaf Kniemeyer, E. Mellado, S. Palomo, N. de Pedro, I. Perez-Victoria, J. R. Tormo, F. Vicente, F. Reyes, O. Genilloud, Axel Brakhage

Date Published: 8th Jun 2015

Journal: Antimicrob Agents Chemother

Abstract (Expand)

The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores.

Authors: C. Baldin, V. Valiante, T. Kruger, L. Schafferer, H. Haas, O. Kniemeyer, Axel Brakhage

Date Published: 26th May 2015

Journal: Proteomics

Abstract (Expand)

Verticillium hemipterigenum (anamorph Torrubiella hemipterigena) is an entomopathogenic fungus and produces a broad range of secondary metabolites. Here, we present the draft genome sequence of the fungus, including gene structure and functional annotation. Genes were predicted incorporating RNA-Seq data and functionally annotated to provide the basis for further genome studies.

Authors: F. Horn, A. Habel, D. H. Scharf, J. Dworschak, Axel Brakhage, Reinhard Guthke, C. Hertweck, Jörg Linde

Date Published: 24th Jan 2015

Journal: Genome Announc

Abstract (Expand)

Aspergillus fumigatus is a saprotrophic filamentous fungus and also the most prevalent airborne fungal pathogen of humans. Depending on the host's immune status, the variety of diseases caused by A. fumigatus ranges from allergies in immunocompetent hosts to life-threatening invasive infections in patients with impaired immunity. In contrast to the majority of other Aspergillus species, which are in most cases nonpathogenic, A. fumigatus features an armory of virulence determinants to establish an infection. For example, A. fumigatus is able to evade the human complement system by binding or degrading complement regulators. Furthermore, the fungus interferes with lung epithelial cells, alveolar macrophages, and neutrophil granulocytes to prevent killing by these immune cells. This chapter summarizes the different strategies of A. fumigatus to manipulate the immune response. We also discuss the potential impact of recent advances in immunoproteomics to improve diagnosis and therapy of an A. fumigatus infection.

Authors: T. Heinekamp, H. Schmidt, K. Lapp, V. Pahtz, Iordana Shopova, N. Koster-Eiserfunke, T. Kruger, O. Kniemeyer, Axel Brakhage

Date Published: 18th Nov 2014

Journal: Semin Immunopathol

Abstract (Expand)

Aspergillus fumigatus is a saprophytic mold that can cause life-threatening infections in immunocompromised patients. In the lung, inhaled conidia are confronted with immune effector cells that attack the fungus by various mechanisms such as phagocytosis, production of antimicrobial proteins or generation of reactive oxygen intermediates. Macrophages and neutrophils can also form nitric oxide (NO) and other reactive nitrogen intermediates (RNI) that potentially also contribute to killing of the fungus. However, fungi can produce several enzymes involved in RNI detoxification. Based on genome analysis of A. fumigatus, we identified two genes encoding flavohemoglobins, FhpA, and FhpB, which have been shown to convert NO to nitrate in other fungi, and a gene encoding S-nitrosoglutathione reductase GnoA reducing S-nitrosoglutathione to ammonium and glutathione disulphide. To elucidate the role of these enzymes in detoxification of RNI, single and double deletion mutants of FhpA, FhpB, and GnoA encoding genes were generated. The analysis of mutant strains using the NO donor DETA-NO indicated that FhpA and GnoA play the major role in defense against RNI. By generating fusions with the green fluorescence protein, we showed that both FhpA-eGFP and GnoA-eGFP were located in the cytoplasm of all A. fumigatus morphotypes, from conidia to hyphae, whereas FhpB-eGFP was localized in mitochondria. Because fhpA and gnoA mRNA was also detected in the lungs of infected mice, we investigated the role of these genes in fungal pathogenicity by using a murine infection model for invasive pulmonary aspergillosis. Remarkably, all mutant strains tested displayed wild-type pathogenicity, indicating that the ability to detoxify host-derived RNI is not essential for virulence of A. fumigatus in the applied mouse infection model. Consistently, no significant differences in killing of DeltafhpA, DeltafhpB, or DeltagnoA conidia by cells of the macrophage cell line MH-S were observed when compared to the wild type.

Authors: K. Lapp, M. Vodisch, K. Kroll, M. Strassburger, O. Kniemeyer, T. Heinekamp, Axel Brakhage

Date Published: 11th Sep 2014

Journal: Front Microbiol

Abstract (Expand)

Streptomyces iranensis HM 35 has been shown to exhibit 72.7% DNA-DNA similarity to the important drug rapamycin (sirolimus)-producing Streptomyces rapamycinicus NRRL5491. Here, we report the genome sequence of HM 35, which represents a partially overlapping repertoire of secondary metabolite gene clusters with S. rapamycinicus, including the gene cluster for rapamycin biosynthesis.

Authors: F. Horn, V. Schroeckh, T. Netzker, Reinhard Guthke, Axel Brakhage, Jörg Linde

Date Published: 19th Jul 2014

Journal: Genome Announc

Abstract (Expand)

The human pathogenic fungus Aspergillus fumigatus normally lives as a soil saprophyte. Its environment includes poorly oxygenated substrates that also occur during tissue invasive growth of the fungus in the human host. Up to now, few cellular factors have been identified that allow the fungus to efficiently adapt its energy metabolism to hypoxia. Here, we cultivated A. fumigatus in an O2 -controlled fermenter and analysed its responses to O2 limitation on a minute timescale. Transcriptome sequencing revealed several genes displaying a rapid and highly dynamic regulation. One of these genes was analysed in detail and found to encode fungoglobin, a previously uncharacterized member of the sensor globin protein family widely conserved in filamentous fungi. Besides low O2 , iron limitation also induced transcription, but regulation was not entirely dependent on the two major transcription factors involved in adaptation to iron starvation and hypoxia, HapX and SrbA respectively. The protein was identified as a functional haemoglobin, as binding of this cofactor was detected for the recombinant protein. Gene deletion in A. fumigatus confirmed that haem-binding fungoglobins are important for growth in microaerobic environments with O2 levels far lower than in hypoxic human tissue.

Authors: F. Hillmann, Jörg Linde, N. Beckmann, M. Cyrulies, M. Strassburger, T. Heinekamp, H. Haas, Reinhard Guthke, Olaf Kniemeyer, Axel Brakhage

Date Published: 7th Jul 2014

Journal: Mol Microbiol

Abstract

Not specified

Authors: D. H. Scharf, T. Heinekamp, Axel Brakhage

Date Published: 30th Jan 2014

Journal: PLoS Pathog

Abstract (Expand)

BACKGROUND: In System Biology, iterations of wet-lab experiments followed by modelling approaches and model-inspired experiments describe a cyclic workflow. This approach is especially useful for the inference of gene regulatory networks based on high-throughput gene expression data. Experiments can verify or falsify the predicted interactions allowing further refinement of the network model. Aspergillus fumigatus is a major human fungal pathogen. One important virulence trait is its ability to gain sufficient amounts of iron during infection process. Even though some regulatory interactions are known, we are still far from a complete understanding of the way iron homeostasis is regulated. RESULTS: In this study, we make use of a reverse engineering strategy to infer a regulatory network controlling iron homeostasis in A. fumigatus. The inference approach utilizes the temporal change in expression data after a change from iron depleted to iron replete conditions. The modelling strategy is based on a set of linear differential equations and offers the possibility to integrate known regulatory interactions as prior knowledge. Moreover, it makes use of important selection criteria, such as sparseness and robustness. By compiling a list of known regulatory interactions for iron homeostasis in A. fumigatus and softly integrating them during network inference, we are able to predict new interactions between transcription factors and target genes. The proposed activation of the gene expression of hapX by the transcriptional regulator SrbA constitutes a so far unknown way of regulating iron homeostasis based on the amount of metabolically available iron. This interaction has been verified by Northern blots in a recent experimental study. In order to improve the reliability of the predicted network, the results of this experimental study have been added to the set of prior knowledge. The final network includes three SrbA target genes. Based on motif searching within the regulatory regions of these genes, we identify potential DNA-binding sites for SrbA. Our wet-lab experiments demonstrate high-affinity binding capacity of SrbA to the promoters of hapX, hemA and srbA. CONCLUSIONS: This study presents an application of the typical Systems Biology circle and is based on cooperation between wet-lab experimentalists and in silico modellers. The results underline that using prior knowledge during network inference helps to predict biologically important interactions. Together with the experimental results, we indicate a novel iron homeostasis regulating system sensing the amount of metabolically available iron and identify the binding site of iron-related SrbA target genes. It will be of high interest to study whether these regulatory interactions are also important for close relatives of A. fumigatus and other pathogenic fungi, such as Candida albicans.

Authors: Jörg Linde, P. Hortschansky, E. Fazius, Axel Brakhage, Reinhard Guthke, H. Haas

Date Published: 19th Jan 2012

Journal: BMC Syst Biol

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH