Publications

Abstract (Expand)

BACKGROUND: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. RESULTS: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. CONCLUSIONS: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth.

Authors: H. Irmer, S. Tarazona, C. Sasse, P. Olbermann, J. Loeffler, S. Krappmann, A. Conesa, G. H. Braus

Date Published: 28th Aug 2015

Journal: BMC Genomics

Abstract (Expand)

BACKGROUND: In System Biology, iterations of wet-lab experiments followed by modelling approaches and model-inspired experiments describe a cyclic workflow. This approach is especially useful for the inference of gene regulatory networks based on high-throughput gene expression data. Experiments can verify or falsify the predicted interactions allowing further refinement of the network model. Aspergillus fumigatus is a major human fungal pathogen. One important virulence trait is its ability to gain sufficient amounts of iron during infection process. Even though some regulatory interactions are known, we are still far from a complete understanding of the way iron homeostasis is regulated. RESULTS: In this study, we make use of a reverse engineering strategy to infer a regulatory network controlling iron homeostasis in A. fumigatus. The inference approach utilizes the temporal change in expression data after a change from iron depleted to iron replete conditions. The modelling strategy is based on a set of linear differential equations and offers the possibility to integrate known regulatory interactions as prior knowledge. Moreover, it makes use of important selection criteria, such as sparseness and robustness. By compiling a list of known regulatory interactions for iron homeostasis in A. fumigatus and softly integrating them during network inference, we are able to predict new interactions between transcription factors and target genes. The proposed activation of the gene expression of hapX by the transcriptional regulator SrbA constitutes a so far unknown way of regulating iron homeostasis based on the amount of metabolically available iron. This interaction has been verified by Northern blots in a recent experimental study. In order to improve the reliability of the predicted network, the results of this experimental study have been added to the set of prior knowledge. The final network includes three SrbA target genes. Based on motif searching within the regulatory regions of these genes, we identify potential DNA-binding sites for SrbA. Our wet-lab experiments demonstrate high-affinity binding capacity of SrbA to the promoters of hapX, hemA and srbA. CONCLUSIONS: This study presents an application of the typical Systems Biology circle and is based on cooperation between wet-lab experimentalists and in silico modellers. The results underline that using prior knowledge during network inference helps to predict biologically important interactions. Together with the experimental results, we indicate a novel iron homeostasis regulating system sensing the amount of metabolically available iron and identify the binding site of iron-related SrbA target genes. It will be of high interest to study whether these regulatory interactions are also important for close relatives of A. fumigatus and other pathogenic fungi, such as Candida albicans.

Authors: Jörg Linde, P. Hortschansky, E. Fazius, Axel Brakhage, Reinhard Guthke, H. Haas

Date Published: 19th Jan 2012

Journal: BMC Syst Biol

Powered by
(v.1.9.1)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH